
10 
APPLICATION DESIGN ISSUES 

In this chapter we discuss some important issues related to the design and the 
development of complex real-time applications requiring sensory acquisition, 
control, and actuation of mechanical components. The aim of this part is to 
give a precise characterization of control applications, so that theory developed 
for real-time computing and scheduling algorithms can be practically used in 
this field to make complex control systems more rehable. In fact, a precise 
observation of the timing constraints specified in the control loops and in the 
sensory acquisition processes is a necessary condition for guaranteeing a stable 
behavior of the controlled system, as well as a predictable performance. 

As specific examples of control activities, we consider some typical robotic 
applications, in which a robot manipulator equipped with a set of sensors in­
teracts with the environment to perform a control task according to stringent 
user requirements. In particular, we discuss when control applications really 
need real-time computing (and not just fast computing), and we show how time 
constraints, such as periods and deadlines, can be derived from the application 
requirements, even though they are not explicitly specified by the user. 

Finally, the basic set of kernel primitives presented in Chapter 9 is used to 
illustrate some concrete programming examples of real-time tasks for sensory 
processing and control activities. 
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10.1 INTRODUCTION 

All complex control applications that require the support of a computing system 
can be characterized by the following components: 

1. The sys tem to be controlled. It can be a plant, a car, a robot, 
physical device that has to exhibit a desired behavior. 

or any 

2. The controller. For our purposes, it will be a computing system that 
has to provide proper inputs to the controlled system based on a desired 
control objective. 

3. The environment. It is the external world in which the controlled system 
has to operate. 

The interactions between the controlled system and the environment are, in 
general, bidirectional and occur by means of two peripheral subsystems (con­
sidered part of the controlled system): an actuation subsystem, which modifies 
the environment through a number of actuators (such as motors, pumps, en­
gines, and so on), and a sensory subsystem, which acquires information from 
the environment through a number of sensing devices (such as microphones, 
cameras, transducers, and so on). A block diagram of the typical control sys­
tem components is shown in Figure 10.1. 
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Figure 10.1 Block diagram of a generic control system. 

Depending on the interactions between the controlled system and the environ­
ment, three classes of control systems can be distinguished: 

1. Monitoring systems, 

2. Open-loop control systems, and 

3. Feedback control systems. 
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USER 

Figure 10.2 General structure of a monitoring system. 

Monitoring systems do not modify the environment but only use sensors to 
perceive its state, process sensory data, and display the results to the user. A 
block diagram of this type of system is shown in Figure 10.2. Typical applica­
tions of these systems include radar tracking, air traffic control, environmental 
pollution monitoring, surveillance, and alarm systems. Many of these appli­
cations require periodic acquisitions of multiple sensors, and each sensor may 
need a different sampling rate. Moreover, if sensors are used to detect critical 
conditions, the sampling rate of each sensor has to be constant in order to 
perform a correct reconstruction of the external signals. In these cases, using 
a hard real-time kernel is a necessary condition for guaranteeing a predictable 
behavior of the system. If sensory acquisition is carried out by a set of concur­
rent periodic tasks (characterized by proper periods and deadlines), the task 
set can be analyzed off-line to verify the feasibility of the schedule within the 
imposed timing constraints. 

Open-loop control systems are systems that interact with the environment. 
However, the actions performed by the actuators do not strictly depend on 
the current state of the environment. Sensors are used to plan actions, but 
there is no feedback between sensors and actuators. This means that, once an 
action is planned, it can be executed independently of new sensory data (see 
Figure 10.3). 

As a typical example of an open-loop control system, consider a robot work­
station equipped with a vision subsystem, whose task is to take a picture of an 
object, identify its location, and send the coordinates to the robot for triggering 
a pick and place operation. In this task, once the object location is identified 
and the arm trajectory is computed based on visual data, the robot motion 
does not need to be modified on-line; therefore, no real-time processing is re­
quired. Notice that real-time computing is not needed even though the pick 
and place operation has to be completed within a deadline. In fact, the correct 
fulfillment of the robot operation does not depend on the kernel but on other 
factors, such as the action planner, the processing speed of visual data, and the 
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Figure 10.3 General structure of an open-loop control system. 
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Figure 10.4 General structure of a feedback control system. 

robot speed. For this control problem, fast computing and smart programming 
may suffice to meet the goal. 

Feedback control systems (or closed-loop control systems) are systems that 
have frequent interactions with the environment in both directions; that is, 
the actions produced by the actuators strictly depend on the current sensory 
information. In these systems, sensing and control are tied together, and one 
or more feedback paths exist from the sensory subsystem to the controller. 
Sensors are often mounted on actuators and are used to probe the environment 
and continuously correct the actions based on actual data (see Figure 10.4). 

Human beings are perhaps the most sophisticated examples of feedback control 
systems. When we explore an unknown object, we do not just see it, but we 
look at it actively, and, in the course of looking, our pupils adjust to the level 
of illumination, our eyes bring the world into sharp focus, our eyes converge or 
diverge, we move our head or change our position to get a better view of it, 
and we use our hands to perceive and enhance tactile information. 

Modern "fly-by-wire" aircrafts are also good examples of feedback control sys­
tems. In these aircrafts, the basic maneuvering commands given by the pilot 
are converted into a series of inputs to a computer, which calculates how the 
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physical flight controls shall be displaced to achieve a maneuver, in the context 
of the current flight conditions. 

The robot workstation described above as an example of open-loop control 
system can also be a feedback control system if we close a loop with the camera 
and use the current visual data to update the robot trajectory on-line. For 
instance, visual feedback becomes necessary if the robot has to grasp a moving 
object whose trajectory is not known a priori. 

In feedback control systems, the use of real-time computing is essential for guar­
anteeing a predictable behavior; in fact, the stability of these systems depends 
not only on the correctness of the control algorithms but also on the timing 
constraints imposed on the feedback loops. In general, when the actions of a 
system strictly depend on actual sensory data, wrong or late sensor readings 
may cause wrong or late actions on the environment, which may have negative 
effects on the whole system. In some case, the consequences of a late action 
can even be catastrophic. For example, in certain environmental conditions, 
under autopilot control, reading the altimeter too late could cause the aircraft 
to stall in a critical flight configuration that could prevent recovery. In delicate 
robot assembling operations, missing deadlines on force readings could cause 
the manipulator to exert too much force on the environment, generating an 
unstable behavior. 

These examples show that, when developing critical real-time applications, the 
following issues should be considered in detail, in addition to the classical design 
issues: 

1. Structuring the application in a number of concurrent tasks, related to the 
activities to be performed; 

2. Assigning the proper timing constraints to tasks; and 

3. Using a predictable operating environment that allows to guarantee that 
those timing constraints can be satisfied. 

These and other issues are discussed in the following sections. 
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10.2 TIME CONSTRAINTS DEFINITION 

When we say that a system reacts in real time within a particular environ­
ment, we mean that its response to any event in that environment has to be 
effective, according to some control strategy, while the event is occurring. This 
means that, in order to be effective, a control task must produce its results 
within a specific deadline, which is defined based on the characteristics of the 
environment and the system itself. 

If meeting a given deadline is critical for the system operation and may cause 
catastrophic consequences, the task must be treated as a hard task. If meeting 
time constraints is desirable, but missing a deadline does not cause any serious 
damage, the task can be treated as a soft task. In addition, activities that 
require regular activation should be handled as periodic tasks. 

From the operating system point of view, a periodic task is a task whose ac­
tivation is directly controlled by the kernel in a time-driven fashion, so that 
it is intrinsically guaranteed to be regular. Viceversa, an aperiodic task is a 
task that is activated by other application tasks or by external events. Hence, 
activation requests for an aperiodic task may come from the explicit execution 
of specific system calls or from the arrival of an interrupt associated with the 
task. Notice that, even though the external interrupts arrive at regular inter­
vals, the associated task should still be handled as an aperiodic task by the 
kernel, unless precise upper bounds on the activation rate are guaranteed for 
that interrupt source. 

If the interrupt source is well known and interrupts are generated at a constant 
rate, or have a minimum interarrival time, then the aperiodic task associated 
with the corresponding event is said to be sporadic and its timing constraints 
can be guaranteed in worst-case assumptions - that is, assuming the maximum 
activation rate. 

Once all application tasks have been identified and time constraints have been 
specified (including periodicity and criticalness), the real-time operating system 
supporting the application is responsible for guaranteeing that all hard tasks 
complete within their deadlines. Soft and non-real-time tasks should be handled 
by using a best-effort strategy (or optimal, whenever possible) to reduce (or 
minimize) their average response times. 
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In the rest of this section we illustrate a few examples of control systems to 
show how time constraints can be derived from the application requirements 
even in those cases in which they are not explicitly defined by the user. 

10.2.1 Obstacle avoidance 

Consider a wheel-vehicle equipped with range sensors that has to operate in 
a certain environment running within a maximum given speed. The vehicle 
could be a completely autonomous system, such as a robot mobile base, or a 
partially autonomous system driven by a human, such as a car or a train having 
an automatic braking system for stopping motion in emergency situations. 

In order to simplify our discussion and reduce the number of controlled vari­
ables, we will consider a vehicle like a train, which moves along a straight line, 
and suppose that we have to design an automatic braking system able to detect 
obstacles in front of the vehicle and control the brakes to avoid collisions. A 
block diagram of the automatic braking system is illustrated in Figure 10.5. 
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Figure 10.5 Scheme of the automatic braking system. 

The Brake Control Unit (BCU) is responsible for acquiring a pair of range 
sensors, computing the distance of the obstacle (if any), reading the state vari­
ables of the vehicle from instruments on the dashboard, and deciding whether 
an emergency stop has to be superimposed. Given the criticalness of the brak­
ing action, this task has to be periodically executed on the BCU. Let T be its 
period. 

In order to determine a safe value for T, several factors have to be considered. 
In particular, the system must ensure that the maximum latency from the 
time at which an obstacle appears and the time at which the vehicle reaches 



308 C H A P T E R 10 

obstacle obstacle brake 
appears detected pushed 

^ t 

vehicle 
at rest 

Figure 10.6 Velocity during brake. 

a complete stop is less than the time to impact. Equivalently, the distance 
D of the obstacle from the vehicle must always be greater than the minimum 
space L needed for a complete stop. To compute the length L, consider the 
plot illustrated in Figure 10.6, which shows the velocity v of the vehicle as a 
function of time when an emergency stop is performed. 

Notice that three time intervals have to be taken in to account to compute the 
worst-case latency: 

The detection delay, from the time at which an obstacle appears on the 
vehicle trajectory and the time at which the obstacle is detected by the 
BCU. This interval is at most equal to the period T of the sensor acquisition 
task. 

The transmission delay, A^, from the time at which the stop command is 
activated by the BCU and the time at which the command starts to be 
actuated by the brakes. 

The braking duration, A^, needed for a complete stop. 

If V is the actual velocity of the vehicle and fif is the wheel-road friction coef­
ficient, the braking duration A^ is given by 

A. = 
l^f9 
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where g is the acceleration of gravity {g = 9.Sm/s'^). Thus, the resulting 
braking space Xb is 

Xb 
'^^J'fg 

Hence, the total length L needed for a complete stop is 

L = v{T + At)-\-Xb. 

By imposing D > L, we obtain the relation that must be satisfied among the 
variables to avoid a collision: 

D > J i - + i ; ( r + A,). (10.1) 
^^j^fg 

If we assume that obstacles are fixed and are always detected at a distance D 
from the vehicle, equation (10.1) allows to determine the maximum value that 
can be assigned to period T: 

D V 
T < A,. (10.2) 

V 2^ifg 

For example, if JD = 100 m, /x/ = 0.5, At = 250 ms, and Vmax — 30 m/s (about 
108 km/h), then the resulting sampling period T must be less than 22 ms. 

It is worth observing that this result can also be used to evaluate how long we 
can look away from the road while driving at a certain speed and visibility. For 
example, if D = 50 m (visibility under fog conditions), fif = 0.5, At = 300 ms 
(our typical reaction time), and v = 60 km/h (about 16.67 m/s or 37 mi/h), 
we can look away from the road for no more than one second! 

10.2.2 Robot deburring 

Consider a robot arm that has to polish an object surface with a grinding tool 
mounted on its wrist, as shown in Figure 10.7. This task can be specified as 
follows: 

Slide the grinding tool on the object surface with a constant speed 
V, while exerting a constant normal force F that must not exceed a 
maximum value equal to Fmax-
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Figure 10.7 Example of a robot deburring workstation. 
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Figure 10.8 Force on the robot tool during deburring. 

In order to maintain a constant contact force against the object surface, the 
robot must be equipped with a force sensor, mounted between the wrist flange 
and the grinding tool. Moreover, to keep the normal force within the specified 
maximum value, the force sensor must be acquired periodically at a constant 
rate, which has to be determined based on the characteristics of the environment 
and the task requirements. At each cycle, the robot trajectory is corrected 
based on the current force readings. 

As illustrated in Figure 10.8, if T is the period of the control process and v is the 
robot horizontal speed, the space covered by the robot end-effector within each 
period is Lr = vT. If an impact due to a contour variation occurs just after 
the force sensor has been read, the contact will be detected at the next period; 
thus, the robot keeps moving for a distance LT against the object, exerting 
an increasing force that depends on the elastic coefficient of the robot-object 
interaction. 
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As the contact is detected, we also have to consider the braking space LB 
covered by the tool from the time at which the stop command is delivered to 
the time at which the robot is at complete rest. This delay depends on the 
robot dynamic response and can be computed as follows. If we approximate 
the robot dynamic behavior with a transfer function having a dominant pole 
fd (as typically done in most cases), then the braking space can be computed 
as LB = VTd^ being r^ = 277"* Hence, the longest distance that can be covered 
by the robot after a collision is given by 

L = LT + LB = v{T-\-Td). 

If K is the rigidity coefficient of the contact between the robot end-effector 
and the object, then the worst-case value of the horizontal force exerted on the 
surface is Fh = KL = Kv{T + r^). Since Fh has to be maintained below a 
maximum value Fmax^ we must impose that 

Kv{T 4- Td) < 

which means 

T < i^^-Td). (10.3) 

Notice that, in order to be feasible, the right side of condition (10.3) must 
not only be greater than zero but must also be greater than the system time 
resolution, fixed by the system tick Q; that is, 

-Td > Q. (10.4) 
Kv 

Equation (10.4) imposes an additional restriction on the application. For ex­
ample, we may derive the maximum speed of the robot during the deburring 
operation as 

or, if V cannot be arbitrarily reduced, we may fix the tick resolution such that 

r^ ^ ( max \ 

Kv 

Once the feasibility is achieved - that is, condition (10.4) is satisfied - the 
result expressed in equation (10.3) says that stiff environments and high robot 
velocities requires faster control loops to guarantee that force does not exceed 
the limit given by Fmax-
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10.2.3 Multilevel feedback control 

In complex control applications characterized by nested servo loops, the fre­
quencies of the control tasks are often chosen to separate the dynamics of the 
controllers. This greatly simplifies the analysis of the stability and the design 
of the control law. 

Consider, for instance, the control architecture shown in Figure 10.9. Each 
layer of this control hierarchy effectively decomposes an input task into simpler 
subtasks executed at lower levels. The top-level input command is the goal, 
which is successively decomposed into subgoals, or subtasks, at each hierarchi­
cal level, until at the lowest level, output signals drive the actuators. Sensory 
data enter this hierarchy at the bottom and are filtered through a series of 
sensory-processing and pattern-recognition modules arranged in a hierarchical 
structure. Each module processes the incoming sensory information, applying 
filtering techniques, extracting features, computing parameters, and recogniz­
ing patterns. 
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Figure 10.9 Example of a hierarchical control system. 
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Sensory information that is relevant to control is extracted and sent as feedback 
to the control unit at the same level; the remaining partially processed data 
is then passed to the next higher level for further processing. As a result, 
feedback enters this hierarchy at every level. At the lowest level, the feedback 
is almost unprocessed and hence is fast-acting with very short delays, while at 
higher levels feedback passes through more and more stages and hence is more 
sophisticated but slower. The implementation of such a hierarchical control 
structure has two main implications: 

Since the most recent data have to be used at each level of control, infor­
mation can be sent through asynchronous communication primitives, using 
overwrite semantic and nonconsumable messages. The use of asynchronous 
message passing mechanisms avoids blocking situations and allows the in­
teraction among periodic tasks running at different frequencies. 

When the frequencies of hierarchical nested servo loops differ for about 
an order of magnitude, the analysis of the stability and the design of the 
control laws are significantly simplified. 

For instance, if at the lowest level a joint position servo is carried out with a 
period of 1 ms, a force control loop closed at the middle level can be performed 
with a period of 10 ms, while a vision process running at the higher control 
level can be executed with a period of 100 ms. 

10.3 HIERARCHICAL DESIGN 

In this section, we present a hierarchical design approach that can be used 
to develop sophisticated control applications requiring sensory integration and 
multiple feedback loops. Such a design approach has been actually adopted 
and experimented on several robot control applications built on top of a hard 
real-time kernel [But91, BAF94, But96]. 

The main advantage of a hierarchical design approach is to simplify the imple­
mentation of complex tasks and provide a flexible programming interface, in 
which most of the low- and middle-level real-time control strategies are built in 
the system as part of the controller and hence can be viewed as basic capabilities 
of the system. 
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Figure 10.10 Hierarchical software environment for programming complex 
robotic applications. 

Figure 10.10 shoves an example of a hierarchical programming environment 
for complex robot applications. Each layer provides the robot system with new 
functions and more sophisticated capabilities. The importance of this approach 
is not simply that one can divide the program into parts; rather, it is crucial 
that each procedure accomplishes an identifiable task that can be used as a 
building block in defining other procedures. 

The Device Level includes a set of modules specifically developed to manage all 
peripheral devices used for low-level I/O operations, such as sensor acquisition, 
joint servo, and output display. Each module provides a set of library functions, 
whose purpose is to facilitate device handling and to encapsulate hardware 
details, so that higher-level software can be developed independently from the 
specific knowledge of the peripheral devices. 

The Behavior Level is the level in which several sensor-based control strategies 
can be implemented to give the robot diflPerent kinds of behavior. The functions 
available at this level of the hierarchy allow the user to close real-time control 
loops, by which the robot can modify its trajectories based on sensory informa­
tion, apply desired forces and torques on the environment, operate according 
to hybrid control schemes, or behave as a mechanical impedance. These basic 
control strategies are essential for executing autonomous tasks in unknown con­
ditions, and, in fact, they are used in the next level to implement more skilled 
actions. 



Application Design Issues 315 

Based on the control strategies developed in the Behavior Level, the Action 
Level enhances the robot capability by adding more sophisticated sensory-motor 
activities, which can be used at the higher level for carrying out complex tasks 
in unstructured environments. Some representative actions developed at this 
level include (1) the ability of the robot to follow an unknown object contour, 
maintaining the end-effector in contact with the explored surface; (2) the reflex 
to avoid obstacles, making use of visual sensors; (3) the ability to adapt the 
end-effector to the orientation of the object to be grasped, based on the reaction 
forces sensed on the wrist; (4) visual tracking, to follow a moving object and 
keep it at the center of the visual field. Many other different actions can be 
easily implemented at this level by using the modules available at the Behavior 
Level or directly taking the suited sensory information from the functions at 
the Device Level. 

Finally, the Application Level is the level at which the user defines the se­
quence of robot actions for accomplishing application tasks, such as assembling 
mechanical parts, exploring unknown objects, manipulating delicate materials, 
or catching moving targets. Notice that these tasks, although sophisticated in 
terms of control, can be readily implemented thanks to the action primitives 
included in the lower levels of the hierarchical control architecture. 

10.3.1 Examples of real-time robotics 
applications 

In this section we describe a number of robot applications that have been imple­
mented by using the control architecture presented above. In all the examples, 
the arm trajectory cannot be precomputed off-line to accomplish the goal, but 
it must be continuously replanned based on the current sensory information. 
As a consequence, these applications require a predictable real-time support 
to guarantee a stable behavior of the robot and meet the specification require­
ments. 

Assembly: peg-in-hole insertion 

Robot assembly is an active area of research since several years. Assembly 
tasks include inserting electronic components on circuit boards, placing arma­
tures, bushings, and end housings on motors, pressing bearings on shafts, and 
inserting valves in cylinders. 
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Theoretical investigations of assembly have focused on the typical problem of 
inserting a peg into a hole, whose direction is known with some degree of 
uncertainty. This task is common to many assembly operations and requires 
the robot to be actively compliant during the insertion, as well as to be highly 
responsive to force changes, in order to continuously correct its motion and 
adapt to the hole constraints. 

The peg-in-hole insertion task has typically been performed by using a hybrid 
position/force control scheme [Cut85, Whi85, AS88]. According to this method, 
the robot is controlled in position along the direction of the hole, whereas it 
is controlled in force along the other directions to reduce the reaction forces 
caused by the contact. Both position and force servo loops must be executed 
periodically at a proper frequency to ensure stability. If the force loop is closed 
around the position loop, as it usually happens, then the position loop frequency 
must be about an order of magnitude higher to avoid dynamics interference 
between the two controllers. 

Surface cleaning 

Cleaning a flat and delicate surface, such as a window glass, implies large arm 
movements that must be controlled to keep the robot end-effector (such as a 
brush) within a plane parallel to the surface to be cleaned. In particular, to 
efficiently perform this task, the robot end-effector must be pressed against the 
glass with a desired constant force. Because of the high rigidity of the glass, a 
small misalignment of the robot with respect to the surface orientation could 
cause the arm to exert large forces in some points of the glass surface or loose 
the contact in some other parts. 

Since small misalignments are always possible in real working conditions, the 
robot is usually equipped with a force sensing device and is controlled in real 
time to exert a constant force on the glass surface. Moreover, the end-effector 
orientation must be continuously adjusted to be parallel to the glass plane. 

The tasks for controlling the end-effector orientation, exerting a constant force 
on the surface, and controlling the position of the arm on the glass must proceed 
in parallel and must be coordinated by a global planner, according to the 
specified goal. 
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Object tactile exploration 

When working in unknown environments, object exploration and recognition 
are essential capabilities for carrying out autonomous operations. If vision does 
not provide enough information or cannot be used because of insufficient light 
conditions, tactile and force sensors can be effectively employed to extract local 
geometric features from the explored objects, such as shape, contour, holes, 
edges, or protruding regions. 

Like the other tasks described above, tactile exploration requires the robot to 
conform to a give geometry. More explicitly, the robot should be compliant in 
the direction normal to the object surface, so that unexpected variations in the 
contour do not produce large changes in the force that the robot applies against 
the object. In the directions parallel to the surface, however, the robot needs 
to maintain a desired trajectory and should therefore be position-controlled. 

Strict time constraints for this task are necessary to guarantee robot stability 
during exploration. For example, periods of servo loops can be derived as a 
function of the robot speed, maximum applied forces, and rigidity coefficients, 
as we have shown in the example described in Section 10.2.2. Other issues 
involved in robot tactile exploration are discussed in [DB87, Baj88]. 

Catching moving objects 

Catching a moving object with one hand is one of the most difficult tasks for 
humans, as well as for robot systems. In order to perform this task, several 
capabilities are required, such as smart sensing, visual tracking, motion predic­
tion, trajectory planning, and fine sensory-motor coordination. If the moving 
target is an intelligent being, like a fast insect or a little mouse, the problem 
becomes more difficult to solve, since the prey may unexpectedly modify its 
trajectory, velocity, and acceleration. In this situation, sensing, planning, and 
control must be performed in real time - that is, while the target is moving -
so that the trajectory of the arm can be modified in time to catch the prey. 

Strict time constraints for the tasks described above derive from the maximum 
velocity and acceleration assumed for the moving object. An implementation 
of this task, using a six degrees of freedom robot manipulator and a vision 
system, is described in [BAF94]. 
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10.4 A ROBOT CONTROL EXAMPLE 

In order to illustrate a concrete real-time application, we show an implemen­
tation of a robot control system capable of exploring unknown objects by in­
tegrating visual and tactile information. To perform this task the robot has 
to exert desired forces on the object surface and follow its contour by means 
of visual feedback. Such a robot system has been realized using a Puma 560 
robot arm equipped with a wrist force/torque sensor and a CCD camera. The 
software control architecture is organized as two servo loops, as shown in Fig­
ure 10.11, where processes are indicated by circles and CABs by rectangles. 
The inner loop is dedicated to image acquisition, force reading, and robot con­
trol, whereas the outer loop performs scene analysis and surface reconstruction. 
The appHcation software consists of four processes: 

A sensory acquisition process periodically reads the force/torque sensor 
and puts data in a CAB named force. This process must have guaranteed 
execution time, since a missed deadline could cause an unstable behavior 
of the robot system. Hence, it is created as a hard task with a period of 
20 ms. 

A visual process periodically reads the image memory filled by the camera 
frame grabber and computes the next exploring direction based on a user 
defined strategy. Data are put in a CAB named path. This is a hard task 
with a period of 80 ms. A missed deadline for this task could cause the 
robot to follow a wrong direction on the object surface. 

Based on the contact condition given by the force/torque data and on 
the exploring direction suggested by the vision system, a robot control 
process computes the cartesian set points for the Puma controller. A 
hybrid position/force control scheme [Whi85, KB86] is used to move the 
robot end-effector along a direction tangential to the object surface and to 
apply forces normal to the surface. The control process is a periodic hard 
task with a period of 28 ms (this rate is imposed by the communication 
protocol used by the robot controller). Missing a deadline for this task 
could cause the robot to react too late and exert too large forces on the 
explored surface, that could break the object or the robot itself. 

A representation task reconstructs the object surface based on the current 
force/torque data and on the exploring direction. Since this is a graphics 
activity that does not affect robot motion, the representation process is 
created as a soft task with a period of 60 ms. 
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display 

Figure 10.11 Process structure for the surface exploration example. 

To better illustrate the application, we show the source code of the tasks. It 
is written in C language and includes the DICK kernel primitives described in 
the previous chapter. 

/* 
/ * 
/* Global constants 
/* 
/* 
#include "dick 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

TICK 

Tl 

T2 

T3 

T4 

WCETl 

WCET2 

WCET3 

WCET4 

.h" 

1.0 

20.0 

80.0 

28.0 

60.0 

0.300 

4.780 

1.183 

2.230 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

DICK header file 

system tick (1 ms) 

period for force 

period for vision 

period for control 

period for display 

(20 

(80 

(28 

(60 

exec-time for force 

exec-time for vision 

exec-time for control 

exec-time for display 

ms) 

ms) 

ms) 

ms) 

(ms) 

(ms) 

(ms) 

(ms) 

-*/ 

*/ 

-*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
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l-k. 
/ * 
/* Global variables 
/jk 

/ ^ 
cab 

cab 

proc 

proc 

proc 

proc 

fdata; 

angle; 

force; 

vision; 

control; 

display; 

/* 

/* 

/* 

/* 

/* 

/* 

CAB for force data 

CAB for path angles 

force sensor acquisition 

camera acq. aind processing 

robot control process 

robot trajectory display 

-*/ 

*/ 

-*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

/* */ 
/* main — in i t i a l i z e s the system and creates a l l tasks */ 
/* */ 

proc mainO 

{ 
ini_system(TICK); 

fdata = open_cab("force" , 3*sizeof (float) , 3); 

angle = open_cab("path" , sizeof (float) , 3); 

create(force, HARD, PERIODIC, Tl, WCETl): 

create(vision, HARD, PERIODIC, T2, WCET2): 

create(control, HARD, PERIODIC, T3, WCET3): 

create(display, SOFT, PERIODIC, T4, WCET4) 

activate_all(); 

while (sys_clock() < LIFETIME) /* do nothing */; 

end_system() ; 
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/* */ 
/* force — reads the force sensor and puts data in a cab */ 
/* */ 

proc forceO 

{ 
float *fvect; /* pointer to cab data */ 

while (1) { 

fvect = reserve(fdata); 

read_force_sensor(fvect) ; 

putmes(fvect, fdata); 

end_cycle() ; 

} 

/* - -̂  / 
/ * 
/* control — 

/* 
/ * 
proc 

{ 
float 

float 

} 

'T/ 

gets data from cabs and sends robot set points */ 

- - - - - 3k / 

- */ 
control 0 

*f vect, *alfa; /* pointers to cab data */ 

x[6]; 

while 

} 

/* robot set-points */ 

(1) { 
fvect = getmesCfdata); 

alfa = getmes(angle); 

controlJLaw (fvect, alfa, x) ; 

sendjTobot (x) ; 

unget(fvect, fdata); 

unget(alfa, angle); 

end_cycle() ; 
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/* */ 
/* vision — gets the image and computes the path angle */ 
/* */ 

proc visionO 

{ 
char image[256][256]; 

float *alfa; /* pointer to cab data */ 

while (1) { 

get_frame(image) ; 

alfa = reserve(angle); 

*alfa = compute_angle (image) ; 

putmes(alfa, angle); 

end_cycle() ; 

} 
} 

/ * */ 
/* display — represents the robot trajectory on the screen */ 
/* */ 

proc displayO 

{ 
float *fvect, *alfa; /* pointers to cab data */ 
float point [3]; /* 3D point on the surface */ 

while (1) { 

fvect = getmes(fdata); 

alfa = getmes(angle); 

surface(fvect, *alfa, point); 

draw-pixel (point) ; 

unget(fvect, fdata); 

unget(alfa, angle); 

end_cycle() ; 




