
2 
BASIC CONCEPTS 

2.1 INTRODUCTION 

Over the last few years, several algorithms and methodologies have been pro­
posed in the literature to improve the predictability of real-time systems. In 
order to present these results we need to define some basic concepts that will 
be used throughout the book. We begin with the most important software en­
tity treated by any operating system, the process, A process is a computation 
that is executed by the CPU in a sequential fashion. In this text, the terms 
process and task are used as synonyms. However, it is worth saying that some 
authors prefer to distinguish them and define a task as a sequential execution 
of code that does not suspend itself during execution, whereas a process is a 
more complex computational activity, that can be composed by many tasks. 

When a single processor has to execute a set of concurrent tasks - that is, 
tasks that can overlap in time - the CPU has to be assigned to the various 
tasks according to a predefined criterion, called a scheduling policy. The set 
of rules that, at any time, determines the order in which tasks are executed is 
called a scheduling algorithm. The specific operation of allocating the CPU to 
a task selected by the scheduling algorithm is referred as dispatching. 

Thus, a task that could potentially execute on the CPU can be either in execu­
tion if it has been selected by the scheduling algorithm or waiting for the CPU 
if another task is executing. A task that can potentially execute on the pro­
cessor, independently on its actual availability, is called an active task. A task 
waiting for the processor is called a ready task, whereas the task in execution 
is called a running task. All ready tasks waiting for the processor are kept in 
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Figure 2.1 Queue of ready tcisks waiting for execution. 

a queue, called ready queue. Operating systems that handles different types of 
tasks, may have more than one ready queue. 

In many operating systems that allow dynamic task activation, the running task 
can be interrupted at any point, so that a more important task that arrives in 
the system can immediately gain the processor and does not need to wait in 
the ready queue. In this case, the running task is interrupted and inserted in 
the ready queue, while the CPU is assigned to the most important ready task 
which just arrived. The operation of suspending the running task and inserting 
it into the ready queue is called preemption. Figure 2.1 schematically illustrates 
the concepts presented above. In dynamic real-time systems, preemption is 
important for three reasons [SZ92]: 

• Tasks performing exception handling may need to preempt existing tasks 
so that responses to exceptions may be issued in a timely fashion. 

• When application tasks have different levels of criticalness expressing task 
importance, preemption permits to anticipate the execution of the most 
critical activities. 

• More efficient schedules can be produced to improve system responsiveness. 

Given a set of tasks, J = { J i , . . . , Jn}, a schedule is an assignment of tasks to 
the processor, so that each task is executed until completion. More formally, a 
schedule can be defined as a function a : R"^ —)• N such that Vi G R~ ,̂ 3^1,^2 
such that t e [ti,t2) and V '̂ G [̂ 1,̂ 2) cr(0 = ^(^0- ^^ other words, cr(^) is an 
integer step function and a{t) = k, with A: > 0, means that task Jk is executing 
at time t, while cr(t) = 0 means that the CPU is idle. Figure 2.2 shows an 
example of schedule obtained by executing three tasks: J i , J2, Js-

• At times ^i, 2̂ 5 3̂ 5 ^md ^4, the processor performs a context switch. 
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Figure 2.2 Schedule obtained by executing three tcisks J i , J2, ^ind J3. 

Each interval [tj, ti^_i) in which a{t) is constant is called time slice. Interval 
[x,y) identifies all values of t such that x < t < y. 

A preemptive schedule is a schedule in which the running task can be 
arbitrarily suspended at any time, to assign the CPU to another task 
according to a predefined scheduling policy. In preemptive schedules, tasks 
may be executed in disjointed interval of times. 

A schedule is said to be feasible if all tasks can be completed according to 
a set of specified constraints. 

A set of tasks is said to be schedulable if there exists at least one algorithm 
that can produce a feasible schedule. 

An example of preemptive schedule is shown in Figure 2.3. 

2.2 TYPES OF TASK CONSTRAINTS 

Typical constraints that can be specified on real-time tasks are of three classes: 
timing constraints, precedence relations, and mutual exclusion constraints on 
shared resources. 
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Figure 2.3 Example of a preemptive schedule. 

2.2.1 Timing constraints 

Real-time systems are characterized by computational activities with stringent 
timing constraints that must be met in order to achieve the desired behavior. 
A typical timing constraint on a task is the deadline, which represents the 
time before which a process should complete its execution without causing any 
damage to the system. Depending on the consequences of a missed deadline, 
real-time tasks are usually distinguished in two classes: 

Hard. A task is said to be hard if a completion after its deadline can 
cause catastrophic consequences on the system. In this case, any instance 
of the task should a priori be guaranteed in the worst-case scenario. 

Soft. A task is said to be soft if missing its deadline decreases the perfor­
mance of the system but does not jeopardize its correct behavior. 

In general, a real-time task Ji can be characterized by the following parameters: 

Arrival t ime af. is the time at which a task becomes ready for execution; 
it is also referred as request time or release time and indicated by r^; 
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Figure 2.4 Typical parameters of a real-time task. 

Computation time C :̂ is the time necessary to the processor for exe­
cuting the task without interruption; 

Deadline di: is the time before which a task should be complete to avoid 
damage to the system; 

Start t ime sf. is the time at which a task starts its execution; 

Finishing time ff. is the time at which a task finishes its execution; 

Criticalness: is a parameter related to the consequences of missing the 
deadline (typically, it can be hard or soft); 

Value Vi'. represents the relative importance of the task with respect to 
the other tasks in the system; 

Lateness L^: Li = fi — di represents the delay of a task completion with 
respect to its deadline; note that if a task completes before the deadline, 
its lateness is negative; 

Tardiness or Exceeding time Ei: Ei = max{0, Li) is the time a task stays 
active after its deadline; 

Laxity or Slack time Xi'. Xi — di — ai — Ci is the maximum time a task 
can be delayed on its activation to complete within its deadline. 

Some of the parameters defined above are illustrated in Figure 2.4. 

Another timing characteristic that can be specified on a real-time task concerns 
the regularity of its activation. In particular, tasks can be defined as periodic or 
aperiodic. Periodic tasks consist of an infinite sequence of identical activities, 
called instances or jobs, that are regularly activated at a constant rate. For the 
sake of clarity, from now on, a periodic task will be denoted by r^, whereas an 
aperiodic job by Jj. 
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Figure 2.5 Sequence of instances for a periodic and an aperiodic task. 

The activation time of the first periodic instance is called phase. If <pi is the 
phase of the periodic task r^, the activation time of the A:th instance is given 
by (pi + (k — l)Ti, where Ti is called period of the task. In many practical 
cases, a periodic process can be completely characterized by its computation 
time Ci and its relative deadline Di, which is often considered coincident to 
the end of the period. Moreover, the parameters C ,̂ Ti e Di are considered 
to be constant for each instance. Aperiodic tasks also consist of an infinite 
sequence of identical activities (instances); however, their activations are not 
regular. Figure 2.5 shows an example of task instances for a periodic and for 
an aperiodic task. 

2.2.2 Precedence constraints 

In certain applications, computational activities cannot be executed in arbitrary 
order but have to respect some precedence relations defined at the design stage. 
Such precedence relations are usually described through a directed acyclic graph 
G, where tasks are represented by nodes and precedence relations by arrows. 
A precedence graph G induces a partial order on the task set. 

The notation Ja -< Jb specifies that task Ja is a predecessor of task J5, 
meaning that G contains a directed path from node Ja to node J^. 

The notation Ja -^ Jb specifies that task Ja is an immediate predecessor 
of Jb, meaning that G contains an arc directed from node Ja to node Jb. 
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Figure 2.6 Precedence relations among five tasks. 

Figure 2.6 illustrates a directed acyclic graph that describes the precedence 
constraints among five tasks. From the graph structure we observe that task 
Ji is the only one that can start executing since it does not have predecessors. 
Tasks with no predecessors are called beginning tasks. As Ji is completed, 
either J2 or J3 can start. Task J4 can start only when J2 is completed, whereas 
J5 must wait the completion of J2 and J3. Tasks with no successors, as J4 and 
J5, are called ending tasks. 

In order to understand how precedence graphs can be derived from tasks' rela­
tions, let us consider the application illustrated in Figure 2.7. Here, a number 
of objects moving on a conveyor belt must be recognized and classified using 
a stereo vision system, consisting of two cameras mounted in a suitable loca­
tion. Suppose that the recognition process is carried out by integrating the 
two-dimensional features of the top view of the objects with the height infor­
mation extracted by the pixel disparity on the two images. As a consequence, 
the computational activities of the application can be organized by defining the 
following tasks: 

Two tasks (one for each camera) dedicated to image acquisition, whose 
objective is to transfer the image from the camera to the processor memory 
(they are identified by acql and acq2); 

Two tasks (one for each camera) dedicated to low-level image processing 
(typical operations performed at this level include digital filtering for noise 
reduction and edge detection; we identify these tasks as edgel and edge2); 

A task for extracting two-dimensional features from the object contours 
(it is referred as shape); 



30 C H A P T E R 2 

,o 
Figure 2.7 Industrial application which requires a visual recognition of ob­
jects on a conveyor belt. 

• A task for computing the pixel disparities from the two images (it is re­
ferred as disp); 

• A task for determining the object height from the results achieved by the 
disp task (it is referred as H); 

• A task performing the final recognition (this task integrates the geometrical 
features of the object contour with the height information and tries to 
match these data with those stored in the data base; it is referred as rec). 

From the logic relations existing among the computations, it is easy to see that 
tasks acql and acq2 can be executed in parallel before any other activity. Tasks 
edgel and edge2 can also be executed in parallel, but each task cannot start 
before the associated acquisition task completes. Task shape is based on the 
object contour extracted by the low-level image processing, therefore it must 
wait the termination of both edgel and edge2. The same is true for task disp, 
which however can be executed in parallel with task shape. Then, task H can 
only start as disp completes and, finally, task rec must wait the completion of 
//"and shape. The resulting precedence graph is shown in Figure 2.8. 
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F i g u r e 2.8 Precedence graph associated with the robotic appHcation. 

2.2,3 Resource constraints 

From a process point of view, a resource is any software structure that can 
be used by the process to advance its execution. Typically, a resource can 
be a data structure, a set of variables, a main memory area, a file, a piece of 
program, or a set of registers of a peripheral device. A resource dedicated to a 
particular process is said to be private, whereas a resource that can be used by 
more tasks is called a shared resource. 

To maintain data consistency, many shared resources do not allow simultaneous 
accesses but require mutual exclusion among competing tasks. They are called 
exclusive resources. Let R be an exclusive resource shared by tasks Ja and J ,̂. 
If A is the operation performed on Ĵ  by Ja, and B is the operation performed 
on -R by Jh, then A and B must never be executed at the same time. A piece 
of code executed under mutual exclusion constraints is called a critical section. 

To ensure sequential accesses to exclusive resources, operating systems usually 
provide a synchronization mechanism (such as semaphores) that can be used by 
tasks to create critical sections of code. Hence, when we say that two or more 
tasks have resource constraints, we mean that they have to be synchronized 
since they share exclusive resources. 
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Figure 2.9 Structure of two tasks that share an exclusive resource. 

Consider two tasks Ji and J2 that share an exclusive resource R (for instance, a 
hst), on which two operations (such as insert and remove) are defined. The code 
implementing such operations is thus a critical section that must be executed 
in mutual exclusion. If a binary semaphore s is used for this purpose, then 
each critical section must begin with a wait(s) primitive and must end with a 
signal(s) primitive (see Figure 2.9). 

If preemption is allowed and Ji has a higher priority than J2, then Ji can block 
in the situation depicted in Figure 2.10. Here, task J2 is activated first, and, 
after a while, it enters the critical section and locks the semaphore. While J2 is 
executing the critical section, task Ji arrives, and, since it has a higher priority, 
it preempts J2 and starts executing. However, at time ^1, when attempting to 
enter its critical section, it is blocked on the semaphore and J2 is resumed. Ji 
is blocked until time ^2, when J2 releases the critical section by executing the 
signal(s) primitive, which unlocks the semaphore. 

A task waiting for an exclusive resource is said to be blocked on that resource. 
All tasks blocked on the same resource are kept in a queue associated with the 
semaphore, which protects the resource. When a running task executes a wait 
primitive on a locked semaphore, it enters a waiting state, until another task 
executes a signal primitive that unlocks the semaphore. When a task leaves 
the waiting state, it does not go in the running state, but in the ready state, 
so that the CPU can be assigned to the highest-priority task by the scheduling 
algorithm. The state transition diagram relative to the situation described 
above is shown in Figure 2.11. 
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F i g u r e 2.11 Waiting state caused by resource constraints. 
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2.3 DEFINITION OF SCHEDULING 
PROBLEMS 

In general, to define a scheduling problem we need to specify three sets: a set 
of n tasks J — {Ji, J2, • • •, «/n}, a set of m processors P = {Pi, P27 • • •, Pm} 
and a set of s types of resources R — {Ri,R2,... .Rs}- Moreover, precedence 
relations among tasks can be specified through a directed acyclic graph, and 
timing constraints can be associated with each task. In this context, scheduling 
means to assign processors from P and resources from R to tasks from J in 
order to complete all tasks under the imposed constraints [B"^93]. This prob­
lem, in its general form, has been shown to be NP-complete [GJ79] and hence 
computationally intractable. 

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic 
real-time systems, where scheduling decisions must be taken on-line during task 
execution. A polynomial algorithm is one whose time complexity grows as a 
polynomial function p of the input length n of an instance. The complexity 
of such algorithms is denoted by 0{p{n)). Each algorithm whose complexity 
function cannot be bounded in that way is called an exponential time algorithm. 
In particular, N P is the class of all decision problems that can be solved in 
polynomial time by a nondeterministic Turing machine. A problem Q is said 
to be NF-complete if Q G N P and, for every Q' G N P , Q' is polynomially 
transformable to Q [GJ79]. A decision problem Q is said to be NF-hard if all 
problems in N P are polynomially transformable to Q, but we cannot show that 
Q e N P . 

Let us consider two algorithms with complexity functions n and 5"̂ , respectively, 
and let us assume that an elementary step for these algorithms lasts 1 /js. If 
the input length of the instance is n = 30, then it is easy to calculate that the 
polynomial algorithm can solve the problem in 30 jis, whereas the other needs 
about 3 • 10^ centuries. This example illustrates that the difference between 
polynomial and exponential time algorithms is large and, hence, it may have 
a strong influence on the performance of dynamic real-time systems. As a 
consequence, one of the research objectives on real-time scheduling is to restrict 
our attention to simpler, but still practical, problems that can be solved in 
polynomial time complexity. 

In order to reduce the complexity of constructing a feasible schedule, one may 
simplify the computer architecture (for example, by restricting to the case of 
uniprocessor systems), or one may adopt a preemptive model, use fixed priori­
ties, remove precedence and/or resource constraints, assume simultaneous task 
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activation, homogeneous task sets (solely periodic or solely aperiodic activities), 
and so on. The assumptions made on the system or on the tasks are typically 
used to classify the various scheduling algorithms proposed in the literature. 

2.3.1 Classification of scheduling algorithms 

Among the great variety of algorithms proposed for scheduling real-time tasks, 
we can identify the following main classes. 

• Preemptive. With preemptive algorithms, the running task can be inter­
rupted at any time to assign the processor to another active task, according 
to a predefined scheduling policy. 

• Non-preemptive. With non-preemptive algorithms, a task, once started, 
is executed by the processor until completion. In this case, all scheduling 
decisions are taken as a task terminates its execution. 

• Static. Static algorithms are those in which scheduling decisions are based 
on fixed parameters, assigned to tasks before their activation. 

• Dynamic. Dynamic algorithms are those in which scheduling decisions are 
based on dynamic parameters that may change during system evolution. 

• Off-line. We say that a scheduling algorithm is used off-line if it is ex­
ecuted on the entire task set before actual task activation. The schedule 
generated in this way is stored in a table and later executed by a dispatcher. 

• On-line. We say that a scheduling algorithm is used on-line if scheduling 
decisions are taken at runtime every time a new task enters the system or 
when a running task terminates. 

• Optimal. An algorithm is said to be optimal if it minimizes some given 
cost function defined over the task set. When no cost function is defined 
and the only concern is to achieve a feasible schedule, then an algorithm 
is said to be optimal if it may fail to meet a deadline only if no other 
algorithms of the same class can meet it. 

• Heuristic. An algorithm is said to be heuristic if it tends toward but does 
not guarantee to find the optimal schedule. 

Moreover, an algorithm is said to be clairvoyant if it knows the future; that 
is, if it knows in advance the arrival times of all the tasks. Although such an 



36 CHAPTER 2 

algorithm does not exist in reality, it can be used for comparing the performance 
of real algorithms against the best possible one. 

Guarantee-based algorithms 

In hard real-time applications that require highly predictable behavior, the 
feasibility of the schedule should be guaranteed in advance; that is, before task 
execution. In this way, if a critical task cannot be scheduled within its deadline, 
the system is still in time to execute an alternative action, attempting to avoid 
catastrophic consequences. In order to check the feasibility of the schedule 
before tasks' execution, the system has to plan its actions by looking ahead in 
the future and by assuming a worst-case scenario. 

In static real-time systems, where the task set is fixed and known a priori, 
all task activations can be precalculated off-line, and the entire schedule can 
be stored in a table that contains all guaranteed tasks arranged in the proper 
order. Then, at runtime, a simple dispatcher simply removes the next task from 
the table and puts it in the running state. The main advantage of the static 
approach is that the run-time overhead does not depend on the complexity 
of the scheduling algorithm. This allows very sophisticated algorithms to be 
used to solve complex problems or find optimal scheduling sequences. On the 
other hand, however, the resulting system is quite inflexible to environmental 
changes; thus, predictability strongly relies on the observance of the hypotheses 
made on the environment. 

In dynamic real-time systems, since new tasks can be activated at runtime, 
the guarantee must be done on-line every time a new task enters the system. 
A scheme of the guarantee mechanism typically adopted in dynamic real-time 
systems is illustrated in Figure 2.12. 
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Figure 2.12 Scheme of the guarantee mechanism used in dynamic hard real­
time systems. 
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F i g u r e 2 .13 Example of domino effect. 

If J is the current task set that has been previously guaranteed, a newly arrived 
task Jnew is accepted into the system if and only if the task set J' = Ju{Jnew} 
is found schedulable. If J' is not schedulable, then task Jnew is rejected to 
preserve the feasibility of the current task set. 

It is worth to notice that, since the guarantee mechanism is based on worst-case 
assumptions, a task could unnecessarily be rejected. This means that the guar­
antee of hard tasks is achieved at the cost of reducing the average performance 
of the system. On the other hand, the benefit of having a guarantee mechanism 
is that potential overload situations can be detected in advance to avoid neg­
ative effects on the system. One of the most dangerous phenomena caused by 
a transient overload is called domino effect. It refers to the situation in which 
the arrival of a new task causes all previously guaranteed tasks to miss their 
deadlines. Let us consider for example the situation depicted in Figure 2.13, 
where tasks are scheduled based on their absolute deadlines. 

At time ô̂  if task Jnew was accepted, all other tasks (previously schedulable) 
would miss their deadlines. In planned-based algorithms, this situation is de­
tected at time ^o, when the guarantee is performed and causes task Jnew to be 
rejected. 

In summary, the guarantee test ensures that, once a task is accepted, it will 
complete within its deadline and, moreover, its execution will not jeopardize 
the feasibility of the tasks that have been previously guaranteed. 
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Best-effort algorithms 

In certain real-time applications, computational activities have soft timing con­
straints that should be met whenever possible to satisfy system requirements, 
however, no catastrophic events will occur if one or more tasks miss their dead­
lines. The only consequence associated with a timing fault is a performance 
degradation of the system. 

For example, in typical multimedia applications, the objective of the comput­
ing system is to handle different types of information (such as text, graphics, 
images, and sound) in order to achieve a certain quality of service for the users. 
In this case, the timing constraints associated with the computational activi­
ties depend on the quality of service requested by the users; hence, missing a 
deadline may only affect the performance of the system. 

To efficiently support soft real-time applications that do not have hard timing 
requirements, a best-effort approach may be adopted for scheduling. A best-
effort scheduling algorithm tries to "do its best" to meet deadlines, but there 
is no guarantee of finding a feasible schedule. In a best-effort approach, tasks 
may be queued according to policies that take time constraints into account; 
however, since feasibility is not checked, a task may be aborted during its 
execution. On the other hand, best-effort algorithms perform much better than 
guarantee-based schemes in the average case. In fact, whereas the pessimistic 
assumptions made in the guarantee mechanism may unnecessarily cause task 
rejections, in best-effort algorithms a task is aborted only under real overload 
conditions. 

Algorithms based on imprecise computation 

The concept of imprecise and approximate computation has emerged as a new 
approach to increasing fiexibility in dynamic scheduling by trading off com­
putation accuracy with timing requirements [Nat95, LNL87, LLN87, LLS"^91, 
L"^94]. In dynamic situations, where the time and resources are not enough for 
computations to complete within the deadline, there may still be enough re­
sources to produce approximate results that may at least prevent a catastrophe. 
The idea of using partial results when exact results cannot be produced within 
the deadline has been used for many years. Recently, however, this concept 
has been formalized, and specific techniques have been developed for designing 
programs that can produce partial results. 
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In a real-time system that supports imprecise computation, every task Ji is 
decomposed into a mandatory subtask Mi and an optional subtask Oi. The 
mandatory subtask is the portion of the computation that must be done in 
order to produce a result of acceptable quality, whereas the optional subtask 
refines this result [SLCG89]. Both subtasks have the same arrival time ai and 
the same deadline di as the original task J^; however, Oi becomes ready for 
execution when Mi is completed. If Ci is the computation time associated 
with Ji, subtasks Mi and Oi have computation times rui and Oj, such that 
rrii -\- Oi — Ci. In order to guarantee a minimum level of performance, Mi 
must be completed within its deadline, whereas Oi can be left incomplete, if 
necessary, at the expense of the quality of the result produced by the task. 

It is worth to notice that the task model used in traditional real-time systems 
is a special case of the one adopted for imprecise computation. In fact, a hard 
task corresponds to a task with no optional part {oi = 0), whereas a soft task 
is equivalent to a task with no mandatory part (m^ = 0). 

In systems that support imprecise computation, the error Ci in the result pro­
duced by Ji (or simply the error of Ji) is defined as the length of the portion 
of Oi discarded in the schedule. If CTJ is the total processor time assigned to Oi 
by the scheduler, the error of task Ji is equal to 

€i = Oi — ai. 

The average error I on the task set J is defined as 

e = y^WiCj, 

where Wi is the relative importance of Ji in the task set. An error ê  > 0 means 
that a portion of subtask Oi has been discarded in the schedule at the expense 
of the quality of the result produced by task Ji but for the benefit of other 
mandatory subtasks that can complete within their deadlines. 

In this model, a schedule is said to be feasible if every mandatory subtask Mi is 
completed in the interval [ai^di]. A schedule is said to be precise if the average 
error e on the task set is zero. In a precise schedule, all mandatory and optional 
subtasks are completed in the interval [ai.di]. 

As an illustrative example, let us consider the task set shown in Figure 2.14a. 
Notice that this task set cannot be precisely scheduled; however, a feasible 
schedule with an average error of e =: 4 can be found, and it is shown in 
Figure 2.14b. In fact, all mandatory subtasks finish within their deadlines. 
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Figure 2.14 An example of an imprecise schedule. 

whereas not all optional subtasks are able to complete. In particular, a time 
unit of execution is subtracted from Oi, two units from O3, and one unit from 
O5. Hence, assuming that all tasks have an importance value equal to one 
(wi ==1), the average error on the task set is 6 = 4. 

2.3.2 Metrics for performance evaluation 

The performance of scheduling algorithms is typically evaluated through a cost 
function defined over the task set. For example, classical scheduling algorithms 
try to minimize the average response time, the total completion time, the 
weighted sum of completion times, or the maximum lateness. When deadlines 
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Average response time: 
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Total completion time: 
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i i 

Weighted sum of completion times: 

n 

tw = y^^mfi 

Maximum lateness: 

Lmax = max(/i - di) 

Maximum number of late tasks: 

Niate = ^missjfi) 
1 = 1 

miss(fi) = < ^ A ' •̂̂ ^ \ I otherwise 

where 
nrf} Qcl T • \ — / 

otherwise 

Table 2.1 Example of cost functions. 

are considered, they are usually added as constraints, imposing that all tasks 
must meet their deadlines. If some deadlines cannot be met with an algorithm 
A, the schedule is said to be infeasible by A. Table 2.1 shows some common 
cost functions used for evaluating the performance of a scheduling algorithm. 

The metrics adopted in the scheduling algorithm has strong implications on 
the performance of the real-time system [SSDB95], and it must be carefully 
chosen according to the specific application to be developed. For example, 
the average response time is generally not of interest for real-time applications 
because there is not direct assessment of individual timing properties such as 
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Figure 2.15 The schedule in a minimizes the maximum lateness, but all tasks 
miss their deadline. The schedule in b has a greater maximum lateness, but 
four tasks out of five complete before their deadline. 

periods or deadlines. The same is true for minimizing the total completion time. 
The weighted sum of completion times is relevant when tasks have different 
importance values that they impart to the system on completion. Minimizing 
the maximum lateness can be useful at design time when resources can be added 
until the maximum lateness achieved on the task set is less than or equal to 
zero. In that case, no task misses its deadline. In general, however, minimizing 
the maximum lateness does not minimize the number of tasks that miss their 
deadlines and does not necessarily prevent one or more tasks from missing their 
deadline. 

Let us consider, for example, the case depicted in Figure 2.15. The schedule 
shown in Figure 2.15a minimizes the maximum lateness, but all tasks miss their 
deadline. On the other hand, the schedule shown in Figure 2.15b has a greater 
maximum lateness, but four tasks out of five complete before their deadline. 

When tasks have soft deadlines and the application concern is to meet as many 
deadlines as possible (without a priori guarantee), then the scheduling algo­
rithm should use a cost function that minimizes the number of late tasks. 
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Figure 2.16 Example of cost functions for different types of tasks. 

In other applications, the benefit of executing a task may depend not only on 
the task importance but also on the time at which it is completed. This can 
be described by means of specific utility functions, which describe the value 
associated with the task as a function of its completion time. Figure 2.16 
illustrates some typical utility functions that can be defined on the application 
tasks. For instance, non-real-time tasks (a) do not have deadlines, thus the 
value achieved by the system is proportional to the task importance and does 
not depend on the completion time. Soft tasks (b) have noncritical deadlines; 
therefore, the value gained by the system is constant if the task finishes before 
its deadline but decreases with the exceeding time. In some cases (c), it is 
required to execute a task on-time; that is, not too early and not too late with 
respect to a given deadline. Hence, the value achieved by the system is high 
if the task is completed around the deadline, but it rapidly decreases with the 
absolute value of the lateness. In other cases (d), executing a task after its 
deadline does not cause catastrophic consequences, but there is no benefit for 
the system, thus the utility function is zero after the deadline. 

When utility functions are defined on the tasks, the performance of a scheduling 
algorithm can be measured by the cumulative value, given by the sum of the 
utility functions computed at each completion time: 

Cumulative-Value — /^^vifi)-
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This type of metrics is very useful for evaluating the performance of a system 
during overload conditions, and it is considered in more detail in Chapter 8. 

2.4 SCHEDULING ANOMALIES 

In this section we describe some singular examples that clearly illustrate that 
real-time computing is not equivalent to fast computing, and an increase of 
computational power in the supporting hardware does not always cause an 
improvement on the performance of a task set. These particular situations, 
called Richard's anomalies, have been described by Graham in 1976 and refer 
to task sets with precedence relations executed in a multiprocessor environment. 
Designers should be aware of such insidious anomalies so that they can avoid 
them. The most important anomalies are expressed by the following theorem 
[Gra76, SSDB95]: 

Theorem 2.1 (Graham) / / a task set is optimally scheduled on a multipro­
cessor with some priority assignment, a fixed number of processors, fixed ex­
ecution times, and precedence constraints, then increasing the number of pro­
cessors, reducing execution times, or weakening the precedence constraints can 
increase the schedule length. 

This result implies that if tasks have deadlines, then adding resources (for 
example, an extra processor) or relaxing constraints (less precedence among 
tasks or fewer execution times requirements) can make things worse. A few 
examples can best illustrate why this theorem is true. 

Let us consider a task set composed by nine tasks J = {Ji, J 2 , . . . , J9}, sorted 
by decreasing priorities, so that Ji priority is greater than Jj priority if and 
only \{ I < j . Moreover, tasks are subject to precedence constraints that are 
described through the graph shown in Figure 2.17. Computation times are 
indicated in parentheses. 

If the above set is executed on a parallel machine with three processors, we 
obtain the optimal schedule cr* illustrated in Figure 2.18, where the global 
completion time is ĉ = 12 units of time. 

Now we will show that adding an extra processor, reducing tasks' execution 
times, or weakening precedence constraints will increase the global completion 
time of the task set. 
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Figure 2.17 Precedence graph of the task set J ; numbers in parentheses 
indicate computation times. 
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Figure 2.18 Optimal schedule of task set J on a three-processor machine. 
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Figure 2.19 Schedule of tcisk set J on a four-processor machine. 
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Figure 2.20 Schedule of task set J on three processors, with computation 
times reduced by one unit of time. 

Number of processors increased 

If we execute the task set J on a more powerful machine consisting of four pro­
cessors, we obtain the schedule illustrated in Figure 2.19, which is characterized 
by a global completion time oi tc = l^ units of time. 

Computation times reduced 

One could think that the global completion time of the task set J could be 
improved by reducing tasks' computation times of each task. However, we can 
surprisingly see that if we reduce the computation time of each task by one unit 
of time, the schedule length will increase with respect to the optimal schedule 
cr*, and the global completion time will be tc = 13, as shown in Figure 2.20. 
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Figure 2.21 a. Precedence graph of task set J obtained by removing the 
constraints on tasks J5 and JQ. b . Schedule of task set J on three processors, 
with precedence constraints weakened. 

Precedence constraints weakened 

Scheduling anomalies can also arise if we remove precedence constraints from 
the directed acyclic graph depicted in Figure 2.17. For instance, if we remove 
the precedence relations between task J4 and tasks J5 and JQ (see Figure 2.21a), 
we obtain the schedule shown in Figure 2.21b, which is characterized by a global 
completion time of tc — 16 units of time. 
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Figure 2.22 Example of anomaly under resource constraints. If J2 and J4 
share the same resource in exclusive mode, the optimal schedule length (a) 
increases if the computation time of task J i is reduced (b). Task are statically 
allocated on the processors. 

Anomalies under resource constraints 

As a last example of scheduling anomalies, we will show how the schedule 
length of a task set can increase when reducing tasks' computation times in 
the presence of shared resources. Consider the case illustrated in Figure 2.22, 
where five tasks are statically allocated on two processors: tasks Ji and J2 on 
processor PI , and tasks J3, J4 and J5 on processor P2. Moreover, tasks J2 and 
J4 share the same resource in exclusive mode, hence their execution cannot 
overlap in time. A schedule of this task set is shown in Figure 2.22a, where the 
total completion time is tc == 17. 

If we now reduce the computation time of task Ji on the first processor, then 
J2 can begin earlier and take the resource before task J4. As a consequence, 
task J4 must now block over the shared resource and possibly miss its deadline. 
This situation is illustrated in Figure 2.22b. As we can see, the blocking time 
experienced by J4 causes a delay in the execution of J5 (which may also miss 
its deadline), increasing the total completion time of the task set from 17 to 
22. 
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Notice that the scheduhng anomaly illustrated by the previous example is par­
ticularly insidious for hard real-time systems because tasks are guaranteed 
based on their worst-case behavior, but they may complete before their worst-
case computation time. A simple solution that avoids the anomaly is to keep 
the processor idle if tasks complete earlier, but this can be very inefficient. 
There are algorithms, such as the one proposed by Shen [SRS93], that tries 
to reclaim this idle time, while addressing the anomalies so that they will not 
occur. 

Exercises 

2.1 Give the formal definition of a schedule, explaining the difference between 
preemptive and non-preemptive scheduling. 

2.2 Explain the difference between periodic and aperiodic tasks, and describe 
the main timing parameters that can be defined for a real-time activity. 

2.3 Describe a real-time application as a number of tasks with precedence 
relations, and draw the corresponding precedence graph. 

2.4 Discuss the difference between static and dynamic, on-line and off-line, 
optimal, and heuristic scheduling algorithms. 

2.5 Provide an example of domino effect, caused by the arrival of a task J*, 
in a feasible set of three tasks. 




