
3
APERIODIC TASK SCHEDULING

3.1 INTRODUCTION

In this chapter we present a variety of algorithms for scheduhng real-time ape­
riodic tasks on a single machine environment. Each algorithm represents a
solution for a particular scheduling problem, which is expressed through a set
of assumptions on the task set and by an optimality criterion to be used on
the schedule. The restrictions made on the task set are aimed at simplifying
the algorithm in terms of time complexity. When no restrictions are applied
on the application tasks, the complexity can be reduced by employing heuristic
approaches, which do not guarantee to find the optimal solution to a problem
but can still guarantee a feasible schedule in a wide range of situations.

Although the algorithms described in this chapter are presented for scheduling
aperiodic tasks on uniprocessor systems, many of them can be extended to work
on multiprocessor or distributed architectures and deal with more complex task
models.

To facilitate the description of the scheduling problems presented in this chapter
we introduce a systematic notation that could serve as a basis for a classification
scheme. Such a notation, proposed by Graham et al. [GLLK79], classifies all
algorithms using three fields a | /? | 7, having the following meaning:

The first field a describes the machine environment on which the task set
has to be scheduled (uniprocessor, multiprocessor, distributed architecture,
and so on).

52 C H A P T E R 3

The second field /? describes task and resource characteristics (preemptive,
independent versus precedence constrained, synchronous activations, and
so on).

The third field 7 indicates the optimality criterion (performance measure)
to be followed in the schedule.

For example:

1 I prec I Lmax denotes the problem of scheduling a set of tasks with
precedence constraints on a uniprocessor machine in order to minimize the
maximum lateness. If no additional constraints are indicated in the second
field, preemption is allowed at any time, and tasks can have arbitrary
arrivals.

3 I nojpreem \ ^ fi denotes the problem of scheduling a set of tasks on a
three-processor machine. Preemption is not allowed and the objective is
to minimize the sum of the finishing times. Since no other constraints are
indicated in the second field, tasks do not have precedence nor resource
constraints but have arbitrary arrival times.

2 I sync \ ^ Latei denotes the problem of scheduling a set of tasks on a
two-processor machine. Tasks have synchronous arrival times and do not
have other constraints. The objective is to minimize the number of late
tasks.

3.2 JACKSON'S ALGORITHM

The problem considered by this algorithm is 1 | sync \ Lmax- That is, a set
J oi n aperiodic tasks has to be scheduled on a single processor, minimizing
the maximum lateness. All tasks consist of a single job, have synchronous
arrival times, but can have different computation times and deadlines. No other
constraints are considered, hence tasks must be independent; that is, cannot
have precedence relations and cannot share resources in exclusive mode.

Notice that, since all tasks arrive at the same time, preemption is not an issue
in this problem. In fact, preemption is effective only when tasks may arrive
dynamically and newly arriving tasks have higher priority than currently exe­
cuting tasks.

Aperiodic Task Scheduling 53

Without loss of generality, we assume that all tasks are activated at time ^ = 0,
so that each job Ji can be completely characterized by two parameters: a
computation time Ci and a relative deadline Di (which, in this case, is also
equal to the absolute deadline). Thus, the task set J can be denoted as

J = {Ji{CuDi), i - l , . . . , n } .

A simple algorithm that solves this problem was found by Jackson in 1955. It
is called Earliest Due Date (EDD) and can be expressed by the following rule
[Jac55]:

Theorem 3.1 (Jackson's rule) Given a set of n independent tasks, any al­
gorithm that executes the tasks in order of nondecreasing deadlines is optimal
with respect to m^inimizing the maximum lateness.

Proof. Jackson's theorem can be proved by a simple interchange argument.
Let cr be a schedule produced by any algorithm A. If A is different than EDD,
then there exist two tasks Ja and J^, with da < db, such that Jb immediately
precedes Ja in cr. Now, let a' be a schedule obtained from a by exchanging J a
with Jft, so that Ja immediately precedes J^ in a'.

As illustrated in Figure 3.1, interchanging the position of J a and J^ in a cannot
increase the maximum lateness. In fact, the maximum lateness between Ja and
Jb in a is Lmax{ci,h) — fa — da, whereas the maximum lateness between J a
and Jb in a' can be written as L'^^^{a,h) — max{L'^,L'^^). Two cases must be
considered:

1. If L ; > Lj,, then L'^^^{a,h) = fa - da, and, since /^ < /«, we have

2. If L'^ < L[, then L'^^^{a,h) = fl^ - db = fa - db, and, since da < db, we
have L'^^^{a,h) < Lmax{a^b).

Since, in both cases, L'^^^{a, b) < Lmax{ci, b), we can conclude that interchang­
ing Ja and Jb in a cannot increase the maximum lateness of the task set. By a
finite number of such transpositions, a can be transformed in (JEDD and, since
in each transposition the maximum lateness cannot increase, CFEDD is optimal.
D

54 C H A P T E R 3

Jb

Lmax = m a x (L a , L 5)
ab

if (L a > L b) then L^^^
ab

f n - d ^ < f n - d ,

if (L a < L 5) then L^^^ = f 5 - d 5 < f a - d ^
ab

ab ab

F i g u r e 3 . 1 O p t i m a l i t y of J a c k s o n ' s a l g o r i t h m .

The complexity required by Jackson's algorithm to build the optimal schedule
is due to the procedure that sorts the tasks by increasing deadlines. Hence,
if the task set consists of n tasks, the complexity of the EDD algorithm is
0 (n log n).

3.2.1 Examples

Example 1

Consider a set of five tasks, simultaneously activated at time t = 0, whose
parameters (worst-case computation times and deadlines) are indicated in the
table shown in Figure 3.2. The schedule of the tasks produced by the EDD
algorithm is also depicted in Figure 3.2. The maximum lateness is equal to —1
and it is due to task J4, which completes a unit of time before its deadline.
Since the maximum lateness is negative, we can conclude that all tasks have
been executed within their deadlines.

Notice that the optimality of the EDD algorithm cannot guarantee the feasi­
bility of the schedule for any task set. It only guarantees that, if there exists a
feasible schedule for a task set, then EDD will find it.

Aperiodic Task Scheduling 55

Ci

di

J l

1

3

J 2

1

10

J 3

1

7

J 4

3

8

J 5

2

5

J l

\

is

1

J 3

1 j
J 4

[1 n̂
4 4 U 2

^max - ^ 4 — "^

I 1 1 1 1 1 1 1 1 1 1—

0 1 2 3 4 5 6 7 8 9 10

Figure 3.2 A feasible schedule produced by Jackson's algorithm.

Ci

di

J l

1

2

J 2

2

5

J 3

1

4

J 4

4

8

J 5

2

6

J l

d

J3

1 d

1 \

J 2

3 ^2 d

1 i ^

J5

5 ^4

I 1
J 4

I \ I \ I I I I I 1

0 1 2 3 4 5 6 7 8 9

Figure 3.3 An infeasible schedule produced by Jackson's algorithm.

Example 2

Figure 3.3 illustrates an example in which the task set cannot be feasibly sched­
uled. Still, however, EDD produces the optimal schedule that minimizes the
maximum lateness. Notice that, since J4 misses its deadline, the maximum
lateness is greater than zero {Lmax = L4 ==2).

56 CHAPTER 3

3.2.2 Guarantee

To guarantee that a set of tasks can be feasibly scheduled by the EDD algo­
rithm, we need to show that, in the worst case, all tasks can complete before
their deadlines. This means that we have to show that for each task, the
worst-case finishing time fi is less than or equal to its deadline di:

Vz = 1, . . . , n fi < di.

If tasks have hard timing requirements, such a schedulability analysis must be
done before actual tasks' execution. Without loss of generality, we can assume
that tasks J i , J 2 , . . . , Jn are listed by increasing deadlines, so that Ji is the task
with the earliest deadline. In this case, the worst-case finishing time of task Ji
can be easily computed as

i

fi - ^Ck.
k=l

Therefore, if the task set consists of n tasks, the guarantee test can be performed
by verifying the following n conditions:

i

Vz = l , . . . , n ^Ck<di. (3.1)
k=i

3.3 HORN'S ALGORITHM

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks
can be activated dynamically during execution), then preemption becomes an
important factor. In general, a scheduling problem in which preemption is al­
lowed is always easier than its nonpreemptive counterpart. In a nonpreemptive
scheduling algorithm, the scheduler must ensure that a newly arriving task will
never need to interrupt a currently executing task in order to meet its own
deadline. This guarantee requires a considerable amount of searching. If pre­
emption is allowed, however, this searching is unnecessary, since a task can be
interrupted if a more important task arrives [WR91].

In 1974, Horn found an elegant solution to the problem of scheduling a set of
n independent tasks on a uniprocessor system, when tasks may have dynamic
arrivals and preemption is allowed (1 | preem \ Lmax)-

The algorithm, called Earliest Deadline First (EDF), can be expressed by the
following theorem [Hor74]:

Aperiodic Task Scheduling 57

Theorem 3.2 (Horn) Given a set of n independent tasks with arbitrary ar­
rival times, any algorithm that at any instant executes the task with the earliest
absolute deadline among all the ready tasks is optimal with respect to minimiz­
ing the maximum lateness.

This result can be proved by an interchange argument similar to the one used by
Jackson. The formal proof of the EDF optimality has been given by Dertouzos
in 1974 [Der74] and it is illustrated below. The complexity of the algorithm
is 0{n) per task, since inserting the newly arrived task into an ordered queue
(the ready queue) of n elements may require up to n steps. Hence, the overall
complexity of EDF for the whole task set is Oin^).

3.3.1 EDF optimality

The original proof provided by Dertouzos [Der74] shows that EDF is optimal
in the sense of feasibility. This means that if there exists a feasible schedule
for a task set J, then EDF is able to find it. The proof can easily be extended
to show that EDF also minimizes the maximum lateness. This is more general
because an algorithm that minimizes the maximum lateness is also optimal in
the sense of feasibility. The contrary is not true.

Using the same approach proposed by Dertouzos, let a be the schedule produced
by a generic algorithm A and let GEDF be the schedule obtained by the EDF
algorithm. Since preemption is allowed, each task can be executed in disjointed
time intervals. Without loss of generality, the schedule a can be divided into
time slices of one unit of time each. To simplify the formulation of the proof,
let us define the following abbreviations:

G{t) identifies the task executing in the slice [t,t -{- \)}

E{i) identifies the ready task that, at time t, has the earliest deadline.

tE{t) is the time (> t) at which the next slice of task E{t) begins its
execution in the current schedule.

If cr / (JEDF^ then in a there exists a time t such that a{t) 7̂ E{t). As
illustrated in Figure 3.4, the basic idea used in the proof is that interchanging
the position of a{t) and E{t) cannot increase the maximum lateness. If the

^ [a,b) denotes an interval of values x such that a < x < b.

58 CHAPTER 3

J2

J3

J2

J3

u

0(t) = 4
o(tE) = 2 ri

I I 1 1 1 1 1 1 1 1 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t = 4 tE=6

a(t) = 2
CT(tE) = 4

(a)

^

-1 r I \ I I I I I r ~

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15

t = 4 tE=6 (b)

Figure 3.4 Proof of the optimality of the EDF algorithm, a. schedule a at
time t = 4. b . new schedule obtained after a transposition.

schedule a starts at time ^ = 0 and D is the latest deadline of the task set
{D = max{ Ji}) then GEDF can be obtained from a by at most D transpositions.

The algorithm used by Dertouzos to transform any schedule a into an EDF
schedule is illustrated in Figure 3.5. For each time slice t, the algorithm verifies
whether the task (T{t) scheduled in the slice t is the one with the earliest dead­
line, E{t). If it is, nothing is done, otherwise a transposition takes place and
the slices at t and IE are exchanged (see Figure 3.4). In particular, the slice of
task E{t) is anticipated at time ,̂ while the slice of task cr(^) is postponed at
time IE' Using the same argument adopted in the proof of Jackson's theorem,
it is easy to show that after each transposition the maximum lateness cannot
increase; therefore, EDF is optimal.

By applying the interchange algorithm to the schedule shown in Figure 3.4a,
the first transposition occurs at time i == 4. At this time, in fact, the CPU is
assigned to J4, but the task with the earliest deadline is J2, which is scheduled
at time IE = 6. As a consequence, the two slices in gray are exchanged and the

Aperiodic Task Scheduling 59

Algorithm: interchange

{
for (t=0 to D-1) {

i{{a{t) ^ Eit)){

a{t) = E{t);

}

}

Figure 3.5 Transformation algorithm used by Dertouzos to prove the opti-
mality of EDF.

resulting schedule is shown in Figure 3.4b. The algorithm examines all slices,
until t — D^ performing a slice exchange when necessary.

To show that a transposition preserves the schedulability note that, at any
instant, each slice in a can be either anticipated or postponed up to IE- If a
slice is anticipated, the feasibility of that task is obviously preserved. If a slice
of Ji is postponed at IE and a is feasible, it must be {IE + 1) < C?£;, being dE
the earliest deadline. Since dE < di for any i, then we have ^£; + 1 < di, which
guarantees the schedulability of the slice postponed at IE-

3.3.2 Example

An example of schedule produced by the EDF algorithm on a set of five tasks is
shown in Figure 3.6. At time ^ = 0, tasks Ji and J2 arrive and, since di < d^,
the processor is assigned to J i , which completes at time i = 1. At time ^ = 2,
when J2 is executing, task J3 arrives and preempts J2, being ds < d2. Note
that, at time ^ = 3, the arrival of J4 does not interrupt the execution of J3,
because ds < d^. As J3 is completed, the processor is assigned to J2, which
resumes and executes until completion. Then J4 starts at ^ = 5, but, at time
^ = 6, it is preempted by J5, which has an earlier deadline. Task J4 resumes
at time t = 8, when J5 is completed. Notice that all tasks meet their deadlines
and the maximum lateness is Lmax = L2 = 0.

60 C H A P T E R 3

ai

Ci

di

J l

0

1

2

J2

0

2

5

J3

2

2

4

J4

3

2

10

J5

6

2

9 '

Izzi L

J5

J2

1=^

~~\ r
2 3

Figure 3.6 Example of EDF schedule.

3.3.3 Guarantee

When tasks have dynamic activations and the arrival times are not known a
priori, the guarantee test has to be done dynamically, whenever a new task
enters the system. Let J be the current set of active tasks, which have been
previously guaranteed, and let Jnew be a newly arrived task. In order to accept
Jnew in the system we have to guarantee that the new task set J' = JU{Jnew}
is also schedulable.

Following the same approach used in EDD, to guarantee that the set J' is
feasibly schedulable by EDF, we need to show that, in the worst case, all tasks
in J' will complete before their deadlines. This means that we have to show
that, for each task, the worst-case finishing time fi is less than or equal to its
deadline di.

Without loss of generality, we can assume that all tasks in J' (including Jnew)
are ordered by increasing deadlines, so that Ji is the task with the earliest
deadline. Moreover, since tasks are preemptable, when Jnew arrives at time t
some tasks could have been partially executed. Thus, let Ci{t) be the remaining

Aperiodic Task Scheduling 61

Algorithm: EDF-guarantee(JT^, Jnew)

{
J' = J \J {Jnew}', /* ordered by deadline */
t = current-time ();
/o = 0;
for (each Ji e J') {

fi = fi-i +Ci{t);
if (fi > di) return(INFEASIBLE);

}
return(FEASIBLE);

}

Figure 3.7 EDF guarantee algorithm.

worst-case execution time of task Ji (notice that Ci{t) has an initial value equal
to Ci and can be updated whenever Ji is preempted). Hence, at time t, the
worst-case finishing time of task Ji can be easily computed as

i

fi = Y^cit).

Thus, the schedulability can be guaranteed by the following conditions:

i

V i - l , . . . , n ^ C f c (0 <di. (3.2)
k=i

Noting that fi = fi-i + Ci{t), the dynamic guarantee test can be performed in
0{n) by executing the algorithm shown in Figure 3.7.

3.4 NON-PREEMPTIVE SCHEDULING

When preemption is not allowed and tasks can have arbitrary arrivals, the
problem of minimizing the maximum lateness and the problem of finding a
feasible schedule become NP-hard [LRKB77, LRK77, KIM78]. Figure 3.8 illus­
trates an example that shows that EDF is no longer optimal if tasks cannot be

62 CH A PT E R 3

optimal

schedule

EDF

schedule

Ji

J2

li

ai

Ci

di

J l

0

4

7

J 2

1

2

5

-* ^ t

k ..v 1 , % . . ,—>
0 1 2 3 4 5 6 7

(a)

- ^ t

- I 1

2 3 4 5 6 7

(b)

Figure 3.8 EDF is not optimal in a non-preemptive model. In fact, although
there exists a feasible schedule (a), the schedule produced by EDF (b) is infea-
sible.

preempted during their execution. In fact, although a feasible schedule exists
for that task set (see Figure 3.8a), EDF does not produce a feasible schedule
(see Figure 3.8b), since J2 executes one unit of time after its deadline. This
happens because EDF immediately assigns the processor to task J i ; thus, when
J2 arrives at time t = 1, Ji cannot be preempted. J2 can start only at time
t = 4, after Ji completion, but it is too late to meet its deadline.

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor
remains idle in the interval [0,1) although Ji is ready to execute. If arrival times
are not known a priori, then no on-line algorithm can decide whether to stay idle
at time 0 or execute task J i . A scheduling algorithm that does not permit the
processor to be idle when there are active jobs is called a non-idle algorithm.
By restricting to the case of non-idle scheduling algorithms, Jeffay, Stanat,
and Martel [JSM91] proved that EDF is still optimal in a non-preemptive task
model.

Aperiodic Task Scheduling 63

empty schedule

partial schedule

Figure 3.9 Search tree for producing a non-preemptive schedule.

When arrival times are known a priori, non-preemptive scheduling problems
are usually treated by branch-and-bound algorithms that perform well in the
average case but degrade to exponential complexity in the worst case. The
structure of the search space is a search tree, represented in Figure 3.9, where
the root is an empty schedule^ an intermediate vertex is a partial schedule^ and
a terminal vertex (leaf) is a complete schedule. Since not all leaves correspond
to feasible schedules, the goal of the scheduling algorithm is to search for a leaf
that corresponds to a feasible schedule.

At each step of the search, the partial schedule associated with a vertex is
extended by inserting a new task. If n is the total number of tasks in the set,
the length of a path from the root to a leaf {tree depth) is also n, whereas the
total number of leaves is n! (n factorial). An optimal algorithm, in the worst
case, may make an exhaustive search to find the optimal schedule in such a
tree, and this may require to analyze n paths of length n!, with a complexity
of 0 (n • n!). Clearly, this approach is computationally intractable and cannot
be used in practical systems when the number of tasks is high.

In this section, two scheduling approaches are presented, whose objective is to
limit the search space and reduce the computational complexity of the algo­
rithm. The first algorithm uses additional information to prune the tree and re­
duce the complexity in the average case. The second algorithm adopts suitable
heuristics to follow promising paths on the tree and build a complete schedule
in polynomial time. Heuristic algorithms may produce a feasible schedule in
polynomial time; however, they do not guarantee to find it, since they do not
explore all possible solutions.

64 C H A P T E R 3

3.4.1 Bratley's algorithm (l | no.preem \ feasible)

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to
solve the problem of finding a feasible schedule of a set of non-preemptive tasks
with arbitrary arrival times. The algorithm starts with an empty schedule
and, at each step of the search, visits a new vertex and adds a task in the
partial schedule. With respect to the exhaustive search, Bratley's algorithm
uses a pruning technique to determine when a current search can be reasonably
abandoned. In particular, a branch is abandoned when

The addition of any node to the current path causes a missed deadline;

A feasible schedule is found at the current path.

To better understand the pruning technique adopted by the algorithm, consider
the task set shown in Figure 3.10, which also illustrates the paths analyzed in
the tree space.

To follow the evolution of the algorithm, the numbers inside each node of the
tree indicate which task is being scheduled in that path, whereas the numbers
beside the nodes represent the time at which the indicated task completes its
execution. Whenever the addition of any node to the current path causes a
missed deadline, the corresponding branch is abandoned and the task causing
the timing fault is labeled with a (f).

In the example, the first task considered for extending the empty schedule
is J i , whose index is written in the first node of the leftmost branch of the
tree. Since Ji arrives at ^ = 4 and requires two units of processing time, its
worst-case finishing time is / i = 6, indicated beside the correspondent node.
Before expanding the branch, however, the pruning mechanism checks whether
the addition of any node to the current path may cause a timing fault, and it
discovers that task J2 would miss its deadline, if added. As a consequence, the
search on this branch is abandoned and a considerable amount of computation
is avoided.

In the average case, pruning techniques are very effective for reducing the search
space. Nevertheless, the worst-case complexity of the algorithm is still 0{n'n\).
For this reason, Bratley's algorithm can only be used in off-line mode, when all
task parameters (including the arrival times) are known in advance. This can
be the case of a time-triggered system, where tasks are activated at predefined
instants by a timer process.

Aperiodic Task Scheduling 65

a i

Ci

di

J l

4

2

7

J 2

1

1

5

J 3

1

2

6

J 4

0

2

4

Number in the node = scheduled task

Number outside the node = finishing time

J i = task that misses its deadline

= feasible schedule

Figure 3.10 Example of search performed by Bratley's algorithm.

As in most off-line real-time systems, the resulting schedule produced by Brat­
ley's algorithm can be stored in a data structure, called task activation list.
Then, at run time, a dispatcher simply extracts the next task from the activa­
tion list and puts it in execution.

3.4.2 The Spring algorithm

Here we describe the scheduling algorithm adopted in the Spring kernel [SR87,
SR91], a hard real-time kernel designed at the University of Massachusetts at
Amherst by Stankovic and Ramamritham to support critical control applica­
tions in dynamic environments. The objective of the algorithm is to find a feasi-

66 C H A P T E R 3

ble schedule when tasks have different types of constraints, such as precedence
relations, resource constraints, arbitrary arrivals, non-preemptive properties,
and importance levels. The Spring algorithm is used in a distributed computer
architecture and can also be extended to include fault-tolerance requirements.

Clearly, this problem is A^P-hard and finding a feasible schedule would be
too expensive in terms of computation time, especially for dynamic systems.
In order to make the algorithm computationally tractable even in the worst
case, the search is driven by a heuristic function H, which actively directs the
scheduling to a plausible path. On each level of the search, function H is applied
to each of the tasks that remain to be scheduled. The task with the smallest
value determined by the heuristic function H is selected to extend the current
schedule.

The heuristic function is a very flexible mechanism that allows to easily define
and modify the scheduling policy of the kernel. For example, 'd H = ai (arrival
time) the algorithm behaves as First Come First Served, li H — d (compu­
tation time) it works as Shortest Job First, whereas if H = di (deadline) the
algorithm is equivalent to Earliest Deadline First.

To consider resource constraints in the scheduling algorithm, each task Ji has
to declare a binary array of resources Ri = [Ri{i),..., Rr{i)], where Rk{i) = 0
if Ji does not use resource Rk, and Rkii) = 1 if Ji uses Rk in exclusive mode.
Given a partial schedule, the algorithm determines, for each resource Rk, the
earliest time the resource is available. This time is denoted as EATk (Earliest
Available Time). Thus, the earliest start time that a task Ji can begin the
execution without blocking on shared resources is

Test{i) = maix[ai,mdix{EATk)],
k

where ai is the arrival time of Ji. Once Test is calculated for all the tasks,
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information
on the tasks, such as

H = d + W'C

H = d+W'Test.

where VF is a weight that can be adjusted for different application environments.
Figure 3.11 shows some possible heuristic functions that can be used in Spring
to direct the search process.

Aperiodic Task Scheduling 67

H = a

H = C

H = d

H = Test

H = d + w

H = d + w

C

Test

First Come First Served (FCFS)

Shortest Job First (SJF)

Earliest Deadline First (EDF)

Earliest Start Time First (ESTF)

EDF + SJF

EDF + ESTF

Figure 3.11 Example of heuristic functions that can be adopted in the Spring
algorithm.

In order to handle precedence constraints, another factor E, called eligibility,
is added to the heuristic function. A task becomes eligible to execute {Ei = 1)
only when all its ancestors in the precedence graph are completed. If a task is
not eligible, then Ei = oo; hence, it cannot be selected for extending a partial
schedule.

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, also feasible by extending it with any
of the remaining tasks. If a partial schedule is found not to be strongly feasible,
the algorithm stops the search process and announces that the task set is not
schedulable, otherwise the search continues until a complete feasible schedule
is met. Since a feasible schedule is reached through n nodes and each partial
schedule requires the evaluation of at most n heuristic functions, the complexity
of the Spring algorithm is 0{n'^).

Backtracking can be used to continue the search after a failure. In this case, the
algorithm returns to the previous partial schedule and extends it by the task
with the second smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited.
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to
be strongly feasible, the heuristic function is apphed not to all the remaining
tasks but only to the k remaining tasks with the earliest deadlines. Given that
only k tasks are considered at each step, the complexity becomes 0{kn). If

68 C H A P T E R 3

the value of k is constant (and small, compared to the task set size), then the
complexity becomes linearly proportional to the number of tasks.

A disadvantage of the heuristic scheduling approach is that it is not optimal.
This means that, if there exists a feasible schedule, the Spring algorithm may
not find it.

3.5 SCHEDULING WITH PRECEDENCE
CONSTRAINTS

The problem of finding an optimal schedule for a set of tasks with precedence
relations is in general A^P-hard. However, optimal algorithms that solve the
problem in polynomial time can be found under particular assumptions on the
tasks. In this section we present two algorithms that minimize the maximum
lateness by assuming synchronous activations and preemptive scheduling, re­
spectively.

3,5.1 Latest Deadline First (1 I prec.sync \ Lmax)

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the
maximum lateness of a set of tasks with precedence relations and simultaneous
arrival times. The algorithm is called Latest Deadline First (LDF) and can be
executed in polynomial time with respect to the number of tasks in the set.

Given a set J oi n tasks and a directed acyclic graph (DAG) describing their
precedence relations, LDF builds the scheduling queue from tail to head: among
the tasks without successors or whose successors have been all selected, LDF
selects the task with the latest deadline to be scheduled last. This procedure is
repeated until all tasks in the set are selected. At run time, tasks are extracted
from the head of the queue, so that the first task inserted in the queue will be
executed last, whereas the last task inserted in the queue will be executed first.

The correctness of this rule is proved as follows. Let J be the complete set of
tasks to be scheduled, let P C JT' be the subset of tasks without successors, and
let Ji be the task in F with the latest deadline di. If cr is any schedule that
does not follow the EDL rule, then the last scheduled task, say Jfc, will not be
the one with the latest deadline; thus dk < di. Since J/ is scheduled before Jfc,
let us partition F into four subsets, so that T = Au {Ji} U B U {Jk}- Clearly,

Aperiodic Task Scheduling 69

in a the maximum lateness for F is greater or equal to L^ = f — dk, where
/ — X]r=i ^i ŝ ^^^ finishing time of task J^.

We show that moving J/ to the end of the schedule cannot increase the maxi­
mum lateness in F, which proves the optimality of LDF. To do that, let a* be
the schedule obtained from a after moving task J/ to the end of the queue and
shifting all other tasks to the left. The two schedules a and cr* are depicted in
Figure 3.12. Clearly, in a* the maximum lateness for F is given by

Each argument of the max function is no greater than Lmaxi"^)- ^^ i^c^t,

L^max{A) = Lmax{A) < Lmax{^) becausc A is uot movcd;

^*max{^) ^ Lmax{B) < Lmax{^) because B starts earlier in cr*;

LI < Lk < I/max(F) because task Jk starts earlier in cr*;

L* = f - di < f - dk < Lmaxi^) because dk <di.

^A^
r

A

A

J 1

^

B Jk

B Jk J l

dk d ,

1 i

dk d ,

1 1

Figure 3.12 Proof of LDF optimality.

Since l^nax^) ^ ^max(F), moviug J I to the end of the schedule does not
increase the maximum lateness in F. This means that scheduling last the
task J{ with the latest deadline minimizes the maximum lateness in F. Then,
removing this task from J and repeating the argument for the remaining n — 1
tasks in the set J — {Ji}^ LDF can find the second-to-last task in the schedule,
and so on. The complexity of the LDF algorithm is 0{n'^)^ since for each of
the n steps it needs to visit the precedence graph to find the subset F with no
successors.

70 C H A P T E R 3

Consider the example depicted in Figure 3.13, which shows the parameters of six
tasks together with their precedence graph. The numbers beside each node of
the graph indicate task deadhnes. Figure 3.13 also shows the schedule produced
by EDF to highlight the differences between the two approaches. The EDF
schedule is constructed by selecting the task with the earliest deadline among
the current eligible tasks. Notice that EDF is not optimal under precedence
constraints, since it achieves a greater Lmax with respect to LDF.

Ci

di

Jl

1

2

J2

1

5

J3

1

4

J4

1

3

J5

1

5

u
1

6

LDF J l

d

J2

1 d

J4

4 d

J3

3 d:

J5

.ds d

1 1

^6

EDF J 1

d

J 3

1 d

1 1

J2

4 d

J4

3 d;;

' 1

J5

.d5 d

r \

u = L . =

- ^ t

Figure 3.13 Comparison between schedules produced by LDF and EDF on
a set of tasks with precedence constraints.

Aperiodic Task Scheduling 71

3.5.2 EDF with precedence constraints
(1 I prec.preem \ Lmax)

The problem of scheduling a set of n tasks with precedence constraints and
dynamic activations can be solved in polynomial time complexity only if tasks
are preemptable. In 1990, Ghetto, Silly, and Bouchentouf [CSB90] presented
an algorithm that solves this problem in elegant fashion. The basic idea of
their approach is to transform a set J of dependent tasks into a set J7* of inde­
pendent tasks by an adequate modification of timing parameters. Then, tasks
are scheduled by the Earliest Deadline First (EDF) algorithm. The transfor­
mation algorithm ensures that J is schedulable and the precedence constraints
are obeyed if and only if J* is schedulable. Basically, all release times and
deadlines are modified so that each task cannot start before its predecessors
and cannot preempt their successors.

Modification of the release times

The rule for modifying tasks' release times is based on the following observation.
Given two tasks J a and Jt, such that J a -^ Jb (that is, Ja is an immediate
predecessor of Jfe), then in any valid schedule that meets precedence constraints
the following conditions must be satisfied (see Figure 3.14):

Sb > ^b (that is, Jb must start the execution not earlier than its
release time);

Sb > ^a -\- Ca (that is, Jb must start the execution not earlier than the
minimum finishing time of Ja).

s K > r

s h > r ^̂ + C,,

r b S b

Figure 3 .14 If Ja —>• Jb, then the release time of J^ can be replaced by
max(r5,ra + Ca).

72 C H A P T E R 3

Therefore, the release time r^ of Jh can be replaced by the maximum between
Vh and {ra -\-Ca) without changing the problem. Let r^ be the new release time
of Jb' Then,

rl - max(rfe,ra + Ca).

The algorithm that modifies the release times can be implemented in 0{n?)
and can be described as follows:

1. For any initial node of the precedence graph, set r* = ri.

2. Select a task Ji such that its release time has not been modified but the
release times of all immediate predecessors Jh have been modified. If no
such task exists, exit.

3. Set r* = max[ri, max(r^ -\- Ch '- Jh -^ Ji)]-

4. Return to step 2.

Modification of the deadlines

The rule for modifying tasks' deadlines is based on the following observation.
Given two tasks J a and J^, such that Ja -^ Jb (that is, J a is an immediate
predecessor of Jb), then in any feasible schedule that meets the precedence
constraints the following conditions must be satisfied (see Figure 3.15):

fa < da (that is, J a must finish the execution within its deadline);

fa^db — Cb (that is, Ja must finish the execution not later than the
maximum start time of J^).

fn < d,

fa ^ d b - Cb

Figure 3.15 If Ja —>• Jh^ then the deadline of J a can be replaced by
rmn(da,db - Cb).

Aperiodic Task Scheduling 73

Therefore, the deadhne da of Ja can be replaced by the minimum between da
and {db — Cb) without changing the problem. Let d* be the new deadline of
Ja. Then,

dl = mm{da,db - Cb).

The algorithm that modifies the deadlines can be implemented in 0{n'^) and
can be described as follows:

1. For any terminal node of the precedence graph, set c/* = di.

2. Select a task Ji such that its deadline has not been modified but the
deadlines of all immediate successors Jk have been modified. If no such
task exists, exit.

3. Set d* = xnin[di, mm{dl — Ck ' Ji -^ Jk)]-

4. Return to step 2.

Proof of optimality

The transformation algorithm ensures that if there exists a feasible schedule
for the modified task set J* under EDF, then the original task set J is also
schedulable, that is, all tasks in J meet both precedence and timing constraints.
In fact, if J* is schedulable, all modified tasks start at or after time r* and are
completed at or before time d*. Since r* > ri and d* < dj, the schedulability
of J"" implies that J is also schedulable.

To show that precedence relations in J are not violated, consider the example
illustrated in Figure 3.16, where Ji must precede J^ (i.e., Ji -^ J2), but J2
arrives before Ji and has an earlier deadline. Clearly, if the two tasks are
executed under EDF, their precedence relation cannot be met. However, if
we apply the transformation algorithm, the time constraints are modified as
follows:

= ri (dl = min((ii,d2 - C2)
= max(r2,ri-h Ci) y d^ = d2

This means that, since r2 > r^, J2 cannot start before J i . Moreover, J2 cannot
preempt Ji because d\ < d^ and, based on EDF, the processor is assigned to
the task with the earliest deadline. Hence, the precedence relation is respected.

74 C H A P T E R 3

Q
J i

O
J2

r*2 = r 1 + C

d 1 = d 2 - C2
*

d 2 = d 2

J l

r 2 r 2 d 9 = d '

Figure 3.16 The transformation algorithm preserves the timing and the
precedence constraints.

In general, for any pair of tasks such that Ji -< Jj, we have r* < TJ and d* < d*.
This means that, if Ji is in execution, then all successors of Ji cannot start
before r̂ because r* < r*. Moreover, they cannot preempt Ji because d* < d*
and, according to EDF, the processor is assigned to the ready task having the
earliest deadline. Therefore, both timing and precedence constraints specified
for task set J are guaranteed by the schedulability of the modified set JT'*.

3.6 SUMMARY

The scheduling algorithms described in this chapter for handling real-time tasks
with aperiodic arrivals can be compared in terms of assumptions on the task
set and computational complexity. Figure 3.17 summarizes the main charac­
teristics of such algorithms and can be used for selecting the most appropriate
scheduling policy for a particular problem.

Aperiodic Task Scheduling 75

independent

precedence
constraints

sync, activation
preemptive

async. activation

non-preemptive
async. activation

EDD (Jackson '55)

0(n logn)

Optimal

LDF (Lawier '73)

0(n2)

Optimal

EDF (Horn '74)

0(n2)

Optimal

EDF*
(Ghetto et al. '90)

0(n2)

Optimal

Tree search
(Bratley '71)

0(n n!)

Optimal

Spring (Stankovic &
Ramamritham '87)

0(n2)

Heuristic

Figure 3 .17 Scheduling algorithms for aperiodic tasks.

Exercises

3.1 Check whether the EarUest Due Date (EDD) algorithm produces a fea­
sible schedule for the following task set (all tasks are synchronous and
start at time ^ = 0):

3.2

3.3

3.4

" ^
Di

[_Ji_

FT"
9

J2

5
16

Js
2
5

JA

3
10

Write an algorithm for finding the maximum lateness of a task set sched­
uled by the EDD algorithm.

Draw the full scheduling tree for the following set of non-preemptive tasks
and mark the branches that are pruned by the Bratley's algorithm.

O'i

Ci

Di !

[Jl

ro~
6

1 ^̂

h
4
2
4

h
2
4
7

J A '

6
2
10

On the scheduling tree developed in the previous exercise find the path
produced by the Spring algorithm using the following heuristic function:
H = a-\- C -\- D. Then find a heuristic function that produces a feasible
schedule.

76 C H A P T E R 3

3.5 Given seven tasks, A, B, C, D, E, F , and G, construct the precedence
graph from the following precedence relations:

A^C
B ->C
C -^ E
D -^ F

B ^ D
C -^ F
D ^G

Then, assuming that all tasks arrive at time ^ = 0, have deadline D =
20, and computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their
arrival times and deadlines to schedule them by EDF.

