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APERIODIC TASK SCHEDULING 

3.1 INTRODUCTION 

In this chapter we present a variety of algorithms for scheduhng real-time ape­
riodic tasks on a single machine environment. Each algorithm represents a 
solution for a particular scheduling problem, which is expressed through a set 
of assumptions on the task set and by an optimality criterion to be used on 
the schedule. The restrictions made on the task set are aimed at simplifying 
the algorithm in terms of time complexity. When no restrictions are applied 
on the application tasks, the complexity can be reduced by employing heuristic 
approaches, which do not guarantee to find the optimal solution to a problem 
but can still guarantee a feasible schedule in a wide range of situations. 

Although the algorithms described in this chapter are presented for scheduling 
aperiodic tasks on uniprocessor systems, many of them can be extended to work 
on multiprocessor or distributed architectures and deal with more complex task 
models. 

To facilitate the description of the scheduling problems presented in this chapter 
we introduce a systematic notation that could serve as a basis for a classification 
scheme. Such a notation, proposed by Graham et al. [GLLK79], classifies all 
algorithms using three fields a | /? | 7, having the following meaning: 

The first field a describes the machine environment on which the task set 
has to be scheduled (uniprocessor, multiprocessor, distributed architecture, 
and so on). 
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The second field /? describes task and resource characteristics (preemptive, 
independent versus precedence constrained, synchronous activations, and 
so on). 

The third field 7 indicates the optimality criterion (performance measure) 
to be followed in the schedule. 

For example: 

1 I prec I Lmax denotes the problem of scheduling a set of tasks with 
precedence constraints on a uniprocessor machine in order to minimize the 
maximum lateness. If no additional constraints are indicated in the second 
field, preemption is allowed at any time, and tasks can have arbitrary 
arrivals. 

3 I nojpreem \ ^ fi denotes the problem of scheduling a set of tasks on a 
three-processor machine. Preemption is not allowed and the objective is 
to minimize the sum of the finishing times. Since no other constraints are 
indicated in the second field, tasks do not have precedence nor resource 
constraints but have arbitrary arrival times. 

2 I sync \ ^ Latei denotes the problem of scheduling a set of tasks on a 
two-processor machine. Tasks have synchronous arrival times and do not 
have other constraints. The objective is to minimize the number of late 
tasks. 

3.2 JACKSON'S ALGORITHM 

The problem considered by this algorithm is 1 | sync \ Lmax- That is, a set 
J oi n aperiodic tasks has to be scheduled on a single processor, minimizing 
the maximum lateness. All tasks consist of a single job, have synchronous 
arrival times, but can have different computation times and deadlines. No other 
constraints are considered, hence tasks must be independent; that is, cannot 
have precedence relations and cannot share resources in exclusive mode. 

Notice that, since all tasks arrive at the same time, preemption is not an issue 
in this problem. In fact, preemption is effective only when tasks may arrive 
dynamically and newly arriving tasks have higher priority than currently exe­
cuting tasks. 
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Without loss of generality, we assume that all tasks are activated at time ^ = 0, 
so that each job Ji can be completely characterized by two parameters: a 
computation time Ci and a relative deadline Di (which, in this case, is also 
equal to the absolute deadline). Thus, the task set J can be denoted as 

J = {Ji{CuDi), i - l , . . . , n } . 

A simple algorithm that solves this problem was found by Jackson in 1955. It 
is called Earliest Due Date (EDD) and can be expressed by the following rule 
[Jac55]: 

Theorem 3.1 (Jackson's rule) Given a set of n independent tasks, any al­
gorithm that executes the tasks in order of nondecreasing deadlines is optimal 
with respect to m^inimizing the maximum lateness. 

Proof. Jackson's theorem can be proved by a simple interchange argument. 
Let cr be a schedule produced by any algorithm A. If A is different than EDD, 
then there exist two tasks Ja and J^, with da < db, such that Jb immediately 
precedes Ja in cr. Now, let a' be a schedule obtained from a by exchanging J a 
with Jft, so that Ja immediately precedes J^ in a'. 

As illustrated in Figure 3.1, interchanging the position of J a and J^ in a cannot 
increase the maximum lateness. In fact, the maximum lateness between Ja and 
Jb in a is Lmax{ci,h) — fa — da, whereas the maximum lateness between J a 
and Jb in a' can be written as L'^^^{a,h) — max{L'^,L'^^). Two cases must be 
considered: 

1. If L ; > Lj,, then L'^^^{a,h) = fa - da, and, since /^ < /«, we have 

2. If L'^ < L[, then L'^^^{a,h) = fl^ - db = fa - db, and, since da < db, we 
have L'^^^{a,h) < Lmax{a^b). 

Since, in both cases, L'^^^{a, b) < Lmax{ci, b), we can conclude that interchang­
ing Ja and Jb in a cannot increase the maximum lateness of the task set. By a 
finite number of such transpositions, a can be transformed in (JEDD and, since 
in each transposition the maximum lateness cannot increase, CFEDD is optimal. 
D 
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F i g u r e 3 . 1 O p t i m a l i t y of J a c k s o n ' s a l g o r i t h m . 

The complexity required by Jackson's algorithm to build the optimal schedule 
is due to the procedure that sorts the tasks by increasing deadlines. Hence, 
if the task set consists of n tasks, the complexity of the EDD algorithm is 
0 (n log n). 

3.2.1 Examples 

Example 1 

Consider a set of five tasks, simultaneously activated at time t = 0, whose 
parameters (worst-case computation times and deadlines) are indicated in the 
table shown in Figure 3.2. The schedule of the tasks produced by the EDD 
algorithm is also depicted in Figure 3.2. The maximum lateness is equal to —1 
and it is due to task J4, which completes a unit of time before its deadline. 
Since the maximum lateness is negative, we can conclude that all tasks have 
been executed within their deadlines. 

Notice that the optimality of the EDD algorithm cannot guarantee the feasi­
bility of the schedule for any task set. It only guarantees that, if there exists a 
feasible schedule for a task set, then EDD will find it. 
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Figure 3.2 A feasible schedule produced by Jackson's algorithm. 
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Figure 3.3 An infeasible schedule produced by Jackson's algorithm. 

Example 2 

Figure 3.3 illustrates an example in which the task set cannot be feasibly sched­
uled. Still, however, EDD produces the optimal schedule that minimizes the 
maximum lateness. Notice that, since J4 misses its deadline, the maximum 
lateness is greater than zero {Lmax = L4 ==2). 
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3.2.2 Guarantee 

To guarantee that a set of tasks can be feasibly scheduled by the EDD algo­
rithm, we need to show that, in the worst case, all tasks can complete before 
their deadlines. This means that we have to show that for each task, the 
worst-case finishing time fi is less than or equal to its deadline di: 

Vz = 1, . . . , n fi < di. 

If tasks have hard timing requirements, such a schedulability analysis must be 
done before actual tasks' execution. Without loss of generality, we can assume 
that tasks J i , J 2 , . . . , Jn are listed by increasing deadlines, so that Ji is the task 
with the earliest deadline. In this case, the worst-case finishing time of task Ji 
can be easily computed as 

i 

fi - ^Ck. 
k=l 

Therefore, if the task set consists of n tasks, the guarantee test can be performed 
by verifying the following n conditions: 

i 

Vz = l , . . . , n ^Ck<di. (3.1) 
k=i 

3.3 HORN'S ALGORITHM 

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks 
can be activated dynamically during execution), then preemption becomes an 
important factor. In general, a scheduling problem in which preemption is al­
lowed is always easier than its nonpreemptive counterpart. In a nonpreemptive 
scheduling algorithm, the scheduler must ensure that a newly arriving task will 
never need to interrupt a currently executing task in order to meet its own 
deadline. This guarantee requires a considerable amount of searching. If pre­
emption is allowed, however, this searching is unnecessary, since a task can be 
interrupted if a more important task arrives [WR91]. 

In 1974, Horn found an elegant solution to the problem of scheduling a set of 
n independent tasks on a uniprocessor system, when tasks may have dynamic 
arrivals and preemption is allowed (1 | preem \ Lmax)-

The algorithm, called Earliest Deadline First (EDF), can be expressed by the 
following theorem [Hor74]: 
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Theorem 3.2 (Horn) Given a set of n independent tasks with arbitrary ar­
rival times, any algorithm that at any instant executes the task with the earliest 
absolute deadline among all the ready tasks is optimal with respect to minimiz­
ing the maximum lateness. 

This result can be proved by an interchange argument similar to the one used by 
Jackson. The formal proof of the EDF optimality has been given by Dertouzos 
in 1974 [Der74] and it is illustrated below. The complexity of the algorithm 
is 0{n) per task, since inserting the newly arrived task into an ordered queue 
(the ready queue) of n elements may require up to n steps. Hence, the overall 
complexity of EDF for the whole task set is Oin^). 

3.3.1 EDF optimality 

The original proof provided by Dertouzos [Der74] shows that EDF is optimal 
in the sense of feasibility. This means that if there exists a feasible schedule 
for a task set J, then EDF is able to find it. The proof can easily be extended 
to show that EDF also minimizes the maximum lateness. This is more general 
because an algorithm that minimizes the maximum lateness is also optimal in 
the sense of feasibility. The contrary is not true. 

Using the same approach proposed by Dertouzos, let a be the schedule produced 
by a generic algorithm A and let GEDF be the schedule obtained by the EDF 
algorithm. Since preemption is allowed, each task can be executed in disjointed 
time intervals. Without loss of generality, the schedule a can be divided into 
time slices of one unit of time each. To simplify the formulation of the proof, 
let us define the following abbreviations: 

G{t) identifies the task executing in the slice [t,t -{- \)} 

E{i) identifies the ready task that, at time t, has the earliest deadline. 

tE{t) is the time (> t) at which the next slice of task E{t) begins its 
execution in the current schedule. 

If cr / (JEDF^ then in a there exists a time t such that a{t) 7̂  E{t). As 
illustrated in Figure 3.4, the basic idea used in the proof is that interchanging 
the position of a{t) and E{t) cannot increase the maximum lateness. If the 

^ [a,b) denotes an interval of values x such that a < x < b. 
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Figure 3.4 Proof of the optimality of the EDF algorithm, a. schedule a at 
time t = 4. b . new schedule obtained after a transposition. 

schedule a starts at time ^ = 0 and D is the latest deadline of the task set 
{D = max{ Ji}) then GEDF can be obtained from a by at most D transpositions. 

The algorithm used by Dertouzos to transform any schedule a into an EDF 
schedule is illustrated in Figure 3.5. For each time slice t, the algorithm verifies 
whether the task (T{t) scheduled in the slice t is the one with the earliest dead­
line, E{t). If it is, nothing is done, otherwise a transposition takes place and 
the slices at t and IE are exchanged (see Figure 3.4). In particular, the slice of 
task E{t) is anticipated at time ,̂ while the slice of task cr(^) is postponed at 
time IE' Using the same argument adopted in the proof of Jackson's theorem, 
it is easy to show that after each transposition the maximum lateness cannot 
increase; therefore, EDF is optimal. 

By applying the interchange algorithm to the schedule shown in Figure 3.4a, 
the first transposition occurs at time i == 4. At this time, in fact, the CPU is 
assigned to J4, but the task with the earliest deadline is J2, which is scheduled 
at time IE = 6. As a consequence, the two slices in gray are exchanged and the 
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Algorithm: interchange 

{ 
for (t=0 to D-1) { 

i{{a{t) ^ Eit)){ 

a{t) = E{t); 

} 

} 

Figure 3.5 Transformation algorithm used by Dertouzos to prove the opti-
mality of EDF. 

resulting schedule is shown in Figure 3.4b. The algorithm examines all slices, 
until t — D^ performing a slice exchange when necessary. 

To show that a transposition preserves the schedulability note that, at any 
instant, each slice in a can be either anticipated or postponed up to IE- If a 
slice is anticipated, the feasibility of that task is obviously preserved. If a slice 
of Ji is postponed at IE and a is feasible, it must be {IE + 1) < C?£;, being dE 
the earliest deadline. Since dE < di for any i, then we have ^£; + 1 < di, which 
guarantees the schedulability of the slice postponed at IE-

3.3.2 Example 

An example of schedule produced by the EDF algorithm on a set of five tasks is 
shown in Figure 3.6. At time ^ = 0, tasks Ji and J2 arrive and, since di < d^, 
the processor is assigned to J i , which completes at time i = 1. At time ^ = 2, 
when J2 is executing, task J3 arrives and preempts J2, being ds < d2. Note 
that, at time ^ = 3, the arrival of J4 does not interrupt the execution of J3, 
because ds < d^. As J3 is completed, the processor is assigned to J2, which 
resumes and executes until completion. Then J4 starts at ^ = 5, but, at time 
^ = 6, it is preempted by J5, which has an earlier deadline. Task J4 resumes 
at time t = 8, when J5 is completed. Notice that all tasks meet their deadlines 
and the maximum lateness is Lmax = L2 = 0. 
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Figure 3.6 Example of EDF schedule. 

3.3.3 Guarantee 

When tasks have dynamic activations and the arrival times are not known a 
priori, the guarantee test has to be done dynamically, whenever a new task 
enters the system. Let J be the current set of active tasks, which have been 
previously guaranteed, and let Jnew be a newly arrived task. In order to accept 
Jnew in the system we have to guarantee that the new task set J' = JU{Jnew} 
is also schedulable. 

Following the same approach used in EDD, to guarantee that the set J' is 
feasibly schedulable by EDF, we need to show that, in the worst case, all tasks 
in J' will complete before their deadlines. This means that we have to show 
that, for each task, the worst-case finishing time fi is less than or equal to its 
deadline di. 

Without loss of generality, we can assume that all tasks in J' (including Jnew) 
are ordered by increasing deadlines, so that Ji is the task with the earliest 
deadline. Moreover, since tasks are preemptable, when Jnew arrives at time t 
some tasks could have been partially executed. Thus, let Ci{t) be the remaining 
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Algorithm: EDF-guarantee(JT^, Jnew) 

{ 
J' = J \J {Jnew}', /* ordered by deadline */ 
t = current-time (); 
/o = 0; 
for (each Ji e J') { 

fi = fi-i +Ci{t); 
if (fi > di) return(INFEASIBLE); 

} 
return(FEASIBLE); 

} 

Figure 3.7 EDF guarantee algorithm. 

worst-case execution time of task Ji (notice that Ci{t) has an initial value equal 
to Ci and can be updated whenever Ji is preempted). Hence, at time t, the 
worst-case finishing time of task Ji can be easily computed as 

i 

fi = Y^cit). 

Thus, the schedulability can be guaranteed by the following conditions: 

i 

V i - l , . . . , n ^ C f c ( 0 <di. (3.2) 
k=i 

Noting that fi = fi-i + Ci{t), the dynamic guarantee test can be performed in 
0{n) by executing the algorithm shown in Figure 3.7. 

3.4 NON-PREEMPTIVE SCHEDULING 

When preemption is not allowed and tasks can have arbitrary arrivals, the 
problem of minimizing the maximum lateness and the problem of finding a 
feasible schedule become NP-hard [LRKB77, LRK77, KIM78]. Figure 3.8 illus­
trates an example that shows that EDF is no longer optimal if tasks cannot be 
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Figure 3.8 EDF is not optimal in a non-preemptive model. In fact, although 
there exists a feasible schedule (a), the schedule produced by EDF (b) is infea-
sible. 

preempted during their execution. In fact, although a feasible schedule exists 
for that task set (see Figure 3.8a), EDF does not produce a feasible schedule 
(see Figure 3.8b), since J2 executes one unit of time after its deadline. This 
happens because EDF immediately assigns the processor to task J i ; thus, when 
J2 arrives at time t = 1, Ji cannot be preempted. J2 can start only at time 
t = 4, after Ji completion, but it is too late to meet its deadline. 

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor 
remains idle in the interval [0,1) although Ji is ready to execute. If arrival times 
are not known a priori, then no on-line algorithm can decide whether to stay idle 
at time 0 or execute task J i . A scheduling algorithm that does not permit the 
processor to be idle when there are active jobs is called a non-idle algorithm. 
By restricting to the case of non-idle scheduling algorithms, Jeffay, Stanat, 
and Martel [JSM91] proved that EDF is still optimal in a non-preemptive task 
model. 
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Figure 3.9 Search tree for producing a non-preemptive schedule. 

When arrival times are known a priori, non-preemptive scheduling problems 
are usually treated by branch-and-bound algorithms that perform well in the 
average case but degrade to exponential complexity in the worst case. The 
structure of the search space is a search tree, represented in Figure 3.9, where 
the root is an empty schedule^ an intermediate vertex is a partial schedule^ and 
a terminal vertex (leaf) is a complete schedule. Since not all leaves correspond 
to feasible schedules, the goal of the scheduling algorithm is to search for a leaf 
that corresponds to a feasible schedule. 

At each step of the search, the partial schedule associated with a vertex is 
extended by inserting a new task. If n is the total number of tasks in the set, 
the length of a path from the root to a leaf {tree depth) is also n, whereas the 
total number of leaves is n! (n factorial). An optimal algorithm, in the worst 
case, may make an exhaustive search to find the optimal schedule in such a 
tree, and this may require to analyze n paths of length n!, with a complexity 
of 0 (n • n!). Clearly, this approach is computationally intractable and cannot 
be used in practical systems when the number of tasks is high. 

In this section, two scheduling approaches are presented, whose objective is to 
limit the search space and reduce the computational complexity of the algo­
rithm. The first algorithm uses additional information to prune the tree and re­
duce the complexity in the average case. The second algorithm adopts suitable 
heuristics to follow promising paths on the tree and build a complete schedule 
in polynomial time. Heuristic algorithms may produce a feasible schedule in 
polynomial time; however, they do not guarantee to find it, since they do not 
explore all possible solutions. 
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3.4.1 Bratley's algorithm (l | no.preem \ feasible) 

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to 
solve the problem of finding a feasible schedule of a set of non-preemptive tasks 
with arbitrary arrival times. The algorithm starts with an empty schedule 
and, at each step of the search, visits a new vertex and adds a task in the 
partial schedule. With respect to the exhaustive search, Bratley's algorithm 
uses a pruning technique to determine when a current search can be reasonably 
abandoned. In particular, a branch is abandoned when 

The addition of any node to the current path causes a missed deadline; 

A feasible schedule is found at the current path. 

To better understand the pruning technique adopted by the algorithm, consider 
the task set shown in Figure 3.10, which also illustrates the paths analyzed in 
the tree space. 

To follow the evolution of the algorithm, the numbers inside each node of the 
tree indicate which task is being scheduled in that path, whereas the numbers 
beside the nodes represent the time at which the indicated task completes its 
execution. Whenever the addition of any node to the current path causes a 
missed deadline, the corresponding branch is abandoned and the task causing 
the timing fault is labeled with a (f). 

In the example, the first task considered for extending the empty schedule 
is J i , whose index is written in the first node of the leftmost branch of the 
tree. Since Ji arrives at ^ = 4 and requires two units of processing time, its 
worst-case finishing time is / i = 6, indicated beside the correspondent node. 
Before expanding the branch, however, the pruning mechanism checks whether 
the addition of any node to the current path may cause a timing fault, and it 
discovers that task J2 would miss its deadline, if added. As a consequence, the 
search on this branch is abandoned and a considerable amount of computation 
is avoided. 

In the average case, pruning techniques are very effective for reducing the search 
space. Nevertheless, the worst-case complexity of the algorithm is still 0{n'n\). 
For this reason, Bratley's algorithm can only be used in off-line mode, when all 
task parameters (including the arrival times) are known in advance. This can 
be the case of a time-triggered system, where tasks are activated at predefined 
instants by a timer process. 
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Figure 3.10 Example of search performed by Bratley's algorithm. 

As in most off-line real-time systems, the resulting schedule produced by Brat­
ley's algorithm can be stored in a data structure, called task activation list. 
Then, at run time, a dispatcher simply extracts the next task from the activa­
tion list and puts it in execution. 

3.4.2 The Spring algorithm 

Here we describe the scheduling algorithm adopted in the Spring kernel [SR87, 
SR91], a hard real-time kernel designed at the University of Massachusetts at 
Amherst by Stankovic and Ramamritham to support critical control applica­
tions in dynamic environments. The objective of the algorithm is to find a feasi-
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ble schedule when tasks have different types of constraints, such as precedence 
relations, resource constraints, arbitrary arrivals, non-preemptive properties, 
and importance levels. The Spring algorithm is used in a distributed computer 
architecture and can also be extended to include fault-tolerance requirements. 

Clearly, this problem is A^P-hard and finding a feasible schedule would be 
too expensive in terms of computation time, especially for dynamic systems. 
In order to make the algorithm computationally tractable even in the worst 
case, the search is driven by a heuristic function H, which actively directs the 
scheduling to a plausible path. On each level of the search, function H is applied 
to each of the tasks that remain to be scheduled. The task with the smallest 
value determined by the heuristic function H is selected to extend the current 
schedule. 

The heuristic function is a very flexible mechanism that allows to easily define 
and modify the scheduling policy of the kernel. For example, 'd H = ai (arrival 
time) the algorithm behaves as First Come First Served, li H — d (compu­
tation time) it works as Shortest Job First, whereas if H = di (deadline) the 
algorithm is equivalent to Earliest Deadline First. 

To consider resource constraints in the scheduling algorithm, each task Ji has 
to declare a binary array of resources Ri = [Ri{i),..., Rr{i)], where Rk{i) = 0 
if Ji does not use resource Rk, and Rkii) = 1 if Ji uses Rk in exclusive mode. 
Given a partial schedule, the algorithm determines, for each resource Rk, the 
earliest time the resource is available. This time is denoted as EATk (Earliest 
Available Time). Thus, the earliest start time that a task Ji can begin the 
execution without blocking on shared resources is 

Test{i) = maix[ai,mdix{EATk)], 
k 

where ai is the arrival time of Ji. Once Test is calculated for all the tasks, 
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information 
on the tasks, such as 

H = d + W'C 

H = d+W'Test. 

where VF is a weight that can be adjusted for different application environments. 
Figure 3.11 shows some possible heuristic functions that can be used in Spring 
to direct the search process. 
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Figure 3.11 Example of heuristic functions that can be adopted in the Spring 
algorithm. 

In order to handle precedence constraints, another factor E, called eligibility, 
is added to the heuristic function. A task becomes eligible to execute {Ei = 1) 
only when all its ancestors in the precedence graph are completed. If a task is 
not eligible, then Ei = oo; hence, it cannot be selected for extending a partial 
schedule. 

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, also feasible by extending it with any 
of the remaining tasks. If a partial schedule is found not to be strongly feasible, 
the algorithm stops the search process and announces that the task set is not 
schedulable, otherwise the search continues until a complete feasible schedule 
is met. Since a feasible schedule is reached through n nodes and each partial 
schedule requires the evaluation of at most n heuristic functions, the complexity 
of the Spring algorithm is 0{n'^). 

Backtracking can be used to continue the search after a failure. In this case, the 
algorithm returns to the previous partial schedule and extends it by the task 
with the second smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited. 
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to 
be strongly feasible, the heuristic function is apphed not to all the remaining 
tasks but only to the k remaining tasks with the earliest deadlines. Given that 
only k tasks are considered at each step, the complexity becomes 0{kn). If 
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the value of k is constant (and small, compared to the task set size), then the 
complexity becomes linearly proportional to the number of tasks. 

A disadvantage of the heuristic scheduling approach is that it is not optimal. 
This means that, if there exists a feasible schedule, the Spring algorithm may 
not find it. 

3.5 SCHEDULING WITH PRECEDENCE 
CONSTRAINTS 

The problem of finding an optimal schedule for a set of tasks with precedence 
relations is in general A^P-hard. However, optimal algorithms that solve the 
problem in polynomial time can be found under particular assumptions on the 
tasks. In this section we present two algorithms that minimize the maximum 
lateness by assuming synchronous activations and preemptive scheduling, re­
spectively. 

3,5.1 Latest Deadline First ( 1 I prec.sync \ Lmax) 

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the 
maximum lateness of a set of tasks with precedence relations and simultaneous 
arrival times. The algorithm is called Latest Deadline First (LDF) and can be 
executed in polynomial time with respect to the number of tasks in the set. 

Given a set J oi n tasks and a directed acyclic graph (DAG) describing their 
precedence relations, LDF builds the scheduling queue from tail to head: among 
the tasks without successors or whose successors have been all selected, LDF 
selects the task with the latest deadline to be scheduled last. This procedure is 
repeated until all tasks in the set are selected. At run time, tasks are extracted 
from the head of the queue, so that the first task inserted in the queue will be 
executed last, whereas the last task inserted in the queue will be executed first. 

The correctness of this rule is proved as follows. Let J be the complete set of 
tasks to be scheduled, let P C JT' be the subset of tasks without successors, and 
let Ji be the task in F with the latest deadline di. If cr is any schedule that 
does not follow the EDL rule, then the last scheduled task, say Jfc, will not be 
the one with the latest deadline; thus dk < di. Since J/ is scheduled before Jfc, 
let us partition F into four subsets, so that T = Au {Ji} U B U {Jk}- Clearly, 
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in a the maximum lateness for F is greater or equal to L^ = f — dk, where 
/ — X]r=i ^i ŝ ^^^ finishing time of task J^. 

We show that moving J/ to the end of the schedule cannot increase the maxi­
mum lateness in F, which proves the optimality of LDF. To do that, let a* be 
the schedule obtained from a after moving task J/ to the end of the queue and 
shifting all other tasks to the left. The two schedules a and cr* are depicted in 
Figure 3.12. Clearly, in a* the maximum lateness for F is given by 

Each argument of the max function is no greater than Lmaxi"^)- ^^ i^c^t, 

L^max{A) = Lmax{A) < Lmax{^) becausc A is uot movcd; 

^*max{^) ^ Lmax{B) < Lmax{^) because B starts earlier in cr*; 

LI < Lk < I/max(F) because task Jk starts earlier in cr*; 

L* = f - di < f - dk < Lmaxi^) because dk <di. 

^A^ 
r 

A 

A 

J 1 

^ 

B Jk 

B Jk J l 

dk d , 

1 i 

dk d , 

1 1 

Figure 3.12 Proof of LDF optimality. 

Since l^nax^) ^ ^max(F), moviug J I to the end of the schedule does not 
increase the maximum lateness in F. This means that scheduling last the 
task J{ with the latest deadline minimizes the maximum lateness in F. Then, 
removing this task from J and repeating the argument for the remaining n — 1 
tasks in the set J — {Ji}^ LDF can find the second-to-last task in the schedule, 
and so on. The complexity of the LDF algorithm is 0{n'^)^ since for each of 
the n steps it needs to visit the precedence graph to find the subset F with no 
successors. 
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Consider the example depicted in Figure 3.13, which shows the parameters of six 
tasks together with their precedence graph. The numbers beside each node of 
the graph indicate task deadhnes. Figure 3.13 also shows the schedule produced 
by EDF to highlight the differences between the two approaches. The EDF 
schedule is constructed by selecting the task with the earliest deadline among 
the current eligible tasks. Notice that EDF is not optimal under precedence 
constraints, since it achieves a greater Lmax with respect to LDF. 
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Figure 3.13 Comparison between schedules produced by LDF and EDF on 
a set of tasks with precedence constraints. 
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3.5.2 EDF with precedence constraints 
(1 I prec.preem \ Lmax) 

The problem of scheduling a set of n tasks with precedence constraints and 
dynamic activations can be solved in polynomial time complexity only if tasks 
are preemptable. In 1990, Ghetto, Silly, and Bouchentouf [CSB90] presented 
an algorithm that solves this problem in elegant fashion. The basic idea of 
their approach is to transform a set J of dependent tasks into a set J7* of inde­
pendent tasks by an adequate modification of timing parameters. Then, tasks 
are scheduled by the Earliest Deadline First (EDF) algorithm. The transfor­
mation algorithm ensures that J is schedulable and the precedence constraints 
are obeyed if and only if J* is schedulable. Basically, all release times and 
deadlines are modified so that each task cannot start before its predecessors 
and cannot preempt their successors. 

Modification of the release times 

The rule for modifying tasks' release times is based on the following observation. 
Given two tasks J a and Jt, such that J a -^ Jb (that is, Ja is an immediate 
predecessor of Jfe), then in any valid schedule that meets precedence constraints 
the following conditions must be satisfied (see Figure 3.14): 

Sb > ^b (that is, Jb must start the execution not earlier than its 
release time); 

Sb > ^a -\- Ca (that is, Jb must start the execution not earlier than the 
minimum finishing time of Ja). 

s K > r 

s h > r ^̂  + C,, 

r b S b 

Figure 3 .14 If Ja —>• Jb, then the release time of J^ can be replaced by 
max(r5,ra + Ca). 
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Therefore, the release time r^ of Jh can be replaced by the maximum between 
Vh and {ra -\-Ca) without changing the problem. Let r^ be the new release time 
of Jb' Then, 

rl - max(rfe,ra + Ca). 

The algorithm that modifies the release times can be implemented in 0{n?) 
and can be described as follows: 

1. For any initial node of the precedence graph, set r* = ri. 

2. Select a task Ji such that its release time has not been modified but the 
release times of all immediate predecessors Jh have been modified. If no 
such task exists, exit. 

3. Set r* = max[ri, max(r^ -\- Ch '- Jh -^ Ji)]-

4. Return to step 2. 

Modification of the deadlines 

The rule for modifying tasks' deadlines is based on the following observation. 
Given two tasks J a and J^, such that Ja -^ Jb (that is, J a is an immediate 
predecessor of Jb), then in any feasible schedule that meets the precedence 
constraints the following conditions must be satisfied (see Figure 3.15): 

fa < da (that is, J a must finish the execution within its deadline); 

fa^db — Cb (that is, Ja must finish the execution not later than the 
maximum start time of J^). 

fn < d, 

fa ^ d b - Cb 

Figure 3.15 If Ja —>• Jh^ then the deadline of J a can be replaced by 
rmn(da,db - Cb). 
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Therefore, the deadhne da of Ja can be replaced by the minimum between da 
and {db — Cb) without changing the problem. Let d* be the new deadline of 
Ja. Then, 

dl = mm{da,db - Cb). 

The algorithm that modifies the deadlines can be implemented in 0{n'^) and 
can be described as follows: 

1. For any terminal node of the precedence graph, set c/* = di. 

2. Select a task Ji such that its deadline has not been modified but the 
deadlines of all immediate successors Jk have been modified. If no such 
task exists, exit. 

3. Set d* = xnin[di, mm{dl — Ck ' Ji -^ Jk)]-

4. Return to step 2. 

Proof of optimality 

The transformation algorithm ensures that if there exists a feasible schedule 
for the modified task set J* under EDF, then the original task set J is also 
schedulable, that is, all tasks in J meet both precedence and timing constraints. 
In fact, if J* is schedulable, all modified tasks start at or after time r* and are 
completed at or before time d*. Since r* > ri and d* < dj, the schedulability 
of J"" implies that J is also schedulable. 

To show that precedence relations in J are not violated, consider the example 
illustrated in Figure 3.16, where Ji must precede J^ (i.e., Ji -^ J2), but J2 
arrives before Ji and has an earlier deadline. Clearly, if the two tasks are 
executed under EDF, their precedence relation cannot be met. However, if 
we apply the transformation algorithm, the time constraints are modified as 
follows: 

= ri ( dl = min((ii,d2 - C2) 
= max(r2,ri-h Ci) y d^ = d2 

This means that, since r2 > r^, J2 cannot start before J i . Moreover, J2 cannot 
preempt Ji because d\ < d^ and, based on EDF, the processor is assigned to 
the task with the earliest deadline. Hence, the precedence relation is respected. 
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Figure 3.16 The transformation algorithm preserves the timing and the 
precedence constraints. 

In general, for any pair of tasks such that Ji -< Jj, we have r* < TJ and d* < d*. 
This means that, if Ji is in execution, then all successors of Ji cannot start 
before r̂  because r* < r*. Moreover, they cannot preempt Ji because d* < d* 
and, according to EDF, the processor is assigned to the ready task having the 
earliest deadline. Therefore, both timing and precedence constraints specified 
for task set J are guaranteed by the schedulability of the modified set JT'*. 

3.6 SUMMARY 

The scheduling algorithms described in this chapter for handling real-time tasks 
with aperiodic arrivals can be compared in terms of assumptions on the task 
set and computational complexity. Figure 3.17 summarizes the main charac­
teristics of such algorithms and can be used for selecting the most appropriate 
scheduling policy for a particular problem. 
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independent 

precedence 
constraints 

sync, activation 
preemptive 

async. activation 

non-preemptive 
async. activation 

EDD (Jackson '55) 

0(n logn) 

Optimal 

LDF (Lawier '73) 

0(n2) 

Optimal 

EDF (Horn '74) 

0(n2) 

Optimal 

EDF* 
(Ghetto et al. '90) 

0(n2) 

Optimal 

Tree search 
(Bratley '71) 

0(n n!) 

Optimal 

Spring (Stankovic & 
Ramamritham '87) 

0(n2) 

Heuristic 

Figure 3 .17 Scheduling algorithms for aperiodic tasks. 

Exercises 

3.1 Check whether the EarUest Due Date (EDD) algorithm produces a fea­
sible schedule for the following task set (all tasks are synchronous and 
start at time ^ = 0): 

3.2 

3.3 

3.4 

" ^ 
Di 

[_Ji_ 

FT" 
9 

J2 

5 
16 

Js 
2 
5 

JA 

3 
10 

Write an algorithm for finding the maximum lateness of a task set sched­
uled by the EDD algorithm. 

Draw the full scheduling tree for the following set of non-preemptive tasks 
and mark the branches that are pruned by the Bratley's algorithm. 
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J A ' 
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2 
10 

On the scheduling tree developed in the previous exercise find the path 
produced by the Spring algorithm using the following heuristic function: 
H = a-\- C -\- D. Then find a heuristic function that produces a feasible 
schedule. 



76 C H A P T E R 3 

3.5 Given seven tasks, A, B, C, D, E, F , and G, construct the precedence 
graph from the following precedence relations: 

A^C 
B ->C 
C -^ E 
D -^ F 

B ^ D 
C -^ F 
D ^G 

Then, assuming that all tasks arrive at time ^ = 0, have deadline D = 
20, and computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their 
arrival times and deadlines to schedule them by EDF. 




