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PERIODIC TASK SCHEDULING 

4.1 INTRODUCTION 

In many real-time control applications, periodic activities represent the major 
computational demand in the system. Periodic tasks typically arise from sen­
sory data acquisition, low-level servoing, control loops, action planning, and 
system monitoring. Such activities need to be cyclically executed at specific 
rates, which can be derived from the application requirements. Some specific 
examples of real-time applications are illustrated in Chapter 10. 

When a control application consists of several concurrent periodic tasks with 
individual timing constraints, the operating system has to guarantee that each 
periodic instance is regularly activated at its proper rate and is completed 
within its deadline (which, in general, could be different than its period). 

In this chapter three basic algorithms for handling periodic tasks are described 
in detail: Rate Monotonic, Earliest Deadline First, and Deadline Monotonic. 
Schedulability analysis is performed for each algorithm in order to derive a guar­
antee test for generic task sets. To facilitate the description of the scheduling 
results presented in this chapter, the following notation is introduced: 

r denotes a set of periodic tasks; 

Ti denotes a generic periodic task; 

Tij denotes the jth instance of task r^; 

rij denotes the release time of the jth instance of task r^; 
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^i denotes the phase of task r^; that is, the release time of its first 
instance {^i = Vi^i); 

Di denotes the relative deadline of task r^; 

dij denotes the absolute deadline of the j th instance of task r̂  {dij = 
^i-\-{j-l)Ti + Di). 

Si J denotes the start time of the jth instance of task r^; that is, the 
time at which it starts executing. 

fij denotes the finishing time of the jth instance of task r^; that is, 
the time at which it completes the execution. 

Moreover, in order to simplify the schedulability analysis, the following hy­
potheses are assumed on the tasks: 

A l . The instances of a periodic task TJ are regularly activated at a 
constant rate. The interval Ti between two consecutive activations 
is the period of the task. 

A2. All instances of a periodic task r̂  have the same worst case exe­
cution time Ci. 

A 3 . All instances of a periodic task TJ have the same relative deadline 
Di, which is equal to the period Tj. 

A4. All tasks in F are independent; that is, there are no precedence 
relations and no resource constraints. 

In addition, the following assumptions are implicitly made: 

A5 . No task can suspend itself, for example on I/O operations. 

A6. All tasks are released as soon as they arrive. 

A7. All overheads in the kernel are assumed to be zero. 

Notice that assumptions Al and A2 are not restrictive because in many control 
applications each periodic activity requires the execution of the same routine 
at regular intervals; therefore, both Ti and Ci are constant for every instance. 
On the other hand, assumptions A3 and A4 could be too tight for practical 



Periodic Task Scheduling 79 

applications. However, the four assumptions are initially considered to derive 
some important results on periodic task scheduling, then such results are ex­
tended to deal with more realistic cases, in which assumptions A3 and A4 are 
relaxed. In particular, the problem of scheduUng a set of tasks under resource 
constraints is considered in detail in Chapter 7. 

In those cases in which the assumptions Al, A2, A3, and A4 hold, a periodic 
task Ti can be completely characterized by the following three parameters: its 
phase ^i, its period Ti and its worst-case computation time Ci. Thus, a set of 
periodic tasks can be denoted by 

r = {ni^uTud), i - l , . . . , n } . 

The release time ri^k and the absolute deadline di^k of the generic kth instance 
can then be computed as 

n,fc = ^i-{-{k-l)Ti 

di,k = Vi^k+Ti^^i + kTi. 

Other parameters that are typically defined on a periodic task are described 
below. 

Response time of an instance. It is the time (measured from the release 
time) at which the instance is terminated: 

Ri,k — fi,k — Ti^k-

Critical instant of a task. It is the time at which the release of a task 
will produce the largest response time. 

Critical time zone of a task. It is the interval between the critical instant 
and the response time of the corresponding request of the task. 

Relative Release Jitter of a task. It is the maximum deviation of the 
start time of two consecutive instances: 

RRJi = max|(5i,fc-ri,fc) - (5i,fc-i-ri,fc-i)|. 
k 

Absolute Release Jitter of a task. It is the maximum deviation of the 
start time among all instances: 

ARJi - max(5i,fc - ri^k) - min(si,fc - ri,^). 
k k 
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Relative Finishing Jitter of a task. It is the maximum deviation of the 
finishing time of two consecutive instances: 

RFJi = max\{fi^k - ri^k) - {fi,k-i - ri^k-i)\' 
k 

Absolute Finishing Jitter of a task. It is the maximum deviation of 
the finishing time among all instances: 

AFJi = max(/i,fc - n^k) - min(/i,fc - n^k)-
k k 

In this context, a periodic task r̂  is said to be feasible if all its instances finish 
within their deadlines. A task set F is said to be schedulahle (or feasible) if all 
tasks in T are feasible. 

4.1.1 Processor utilization factor 

Given a set F of n periodic tasks, the processor utilization factor U is the 
fraction of processor time spent in the execution of the task set [LL73]. Since 
Ci/Ti is the fraction of processor time spent in executing task r^, the utilization 
factor for n tasks is given by 

The processor utilization factor provides a measure of the computational load 
on the CPU due to the periodic task set. Although the CPU utilization can 
be improved by increasing tasks' computation times or by decreasing their 
periods, there exists a maximum value of U below which F is schedulable and 
above which F is not schedulable. Such a limit depends on the task set (that 
is, on the particular relations among tasks' periods) and on the algorithm used 
to schedule the tasks. Let UubiX-i^) be the upper bound of the processor 
utilization factor for a task set F under a given algorithm A. 

When U = UuhiX.A)^ the set F is said to fully utilize the processor. In this 
situation, F is schedulable by A, but an increase in the computation time in 
any of the tasks will make the set infeasible. For a given algorithm A, the least 
upper bound Uiub{A) of the processor utilization factor is the minimum of the 
utilization factors over all task sets that fully utilize the processor: 

Uiub{A) = minUubi^^A). 
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Figure 4.1 Meaning of the least upper bound of the processor utilization 
factor. 

Figure 4.1 graphically illustrates the meaning of Uiub for a scheduling algorithm 
A. The task sets Fj shown in the figure differ for the number of tasks and for 
the configuration of their periods. When scheduled by the algorithm A, each 
task set F^ fully utilizes the processor when its utilization factor Ui (varied by 
changing tasks' computation times) reaches a particular upper bound Uub, • If 
Ui < Uubi-, then F^ is schedulable, else F^ is not schedulable. Notice that each 
task set may have a different upper bound. Since Uiub{A) is the minimum of all 
upper bounds, any task set having a processor utilization factor below Uiub{^) 
is certainly schedulable by A. 

Uiub defines an important characteristic of a scheduling algorithm because it 
allows to easily verify the schedulability of a task set. In fact, any task set 
whose processor utilization factor is below this bound is schedulable by the 
algorithm. On the other hand, utilization above this bound can be achieved 
only if the periods of the tasks are suitably related. 

If the utilization factor of a task set is greater than one, the task set cannot be 
scheduled by any algorithm, 
the periods: T = T1T2 . . . Tn 
written as 

To show this result, let T be the product of all 
If t/ > 1, we also have UT > T, which can be 

j:irc.>T. 
1 = 1 

Ti 
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The factor {T/Ti) represents the number of times that r̂  is executed in the 
interval T, whereas the quantity {T/Ti)Ci is the total computation time re­
quested by Ti in the interval T. Hence, the sum on the left hand side represents 
the total demand of computation time requested by all tasks in T. Clearly, 
if the total demand exceeds the available processor time, there is no feasible 
schedule for the task set. 

4.2 RATE MONOTONIC SCHEDULING 

The Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns 
priorities to tasks according to their request rates. Specifically, tasks with 
higher request rates (that is, with shorter periods) will have higher priorities. 
Since periods are constant, RM is a fixed-priority assignment: priorities are 
assigned to tasks before execution and do not change over time. Moreover, 
RM is intrinsically preemptive: the currently executing task is preempted by a 
newly arrived task with shorter period. 

In 1973, Liu and Layland [LL73] showed that RM is optimal among all fixed-
priority assignments in the sense that no other fixed-priority algorithms can 
schedule a task set that cannot be scheduled by RM. Liu and Layland also 
derived the least upper bound of the processor utilization factor for a generic 
set of n periodic tasks. These issues are discussed in detail in the following 
subsections. 

4.2.1 Optimality 

In order to prove the optimality of the RM algorithm, we first show that a 
critical instant for any task occurs whenever the task is released simultaneously 
with all higher-priority tasks. Let T = { r i , r2 , . . . ,rn} be the set of periodic 
tasks ordered by increasing periods, with r^ being the task with the longest 
period. According to RM, Tn will also be the task with the lowest priority. 

As shown in Figure 4.2a, the response time of task r^ is delayed by the inter­
ference of Ti with higher priority. Moreover, from Figure 4.2b it is clear that 
advancing the release time of TJ may increase the completion time of r^. As 
a consequence, the response time of Tn is largest when it is released simulta­
neously with Ti. Repeating the argument for all r^, i = 2 , . . . , n — 1, we prove 
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(a) 

(b) 

^ t 

Figure 4.2 a. The response time of tcisk Tn is delayed by the interference of 
Ti with higher priority, b . The interference may increase advancing the release 
time of Ti. 

that the worst response time of a task occurs when it is released simultaneously 
with all higher-priority tasks. 

A first consequence of this result is that task schedulability can easily be checked 
at their critical instants. Specifically, if all tasks are feasible at their critical 
instants, then the task set is schedulable in any other condition. Based on 
this result, the optimality of RM is justified by showing that if a task set is 
schedulable by an arbitrary priority assignment, then it is also schedulable by 
RM. 

Consider a set of two periodic tasks ri and T2, with Ti < T2. If priorities are 
not assigned according to RM, then task T2 will receive the highest priority. 
This situation is depicted in Figure 4.3, from which it is easy to see that, at 
critical instants, the schedule is feasible if the following inequality is satisfied: 

Ci-f C2 < T i . (4.1) 

On the other hand, if priorities are assigned according to RM, task Ti will 
receive the highest priority. In this situation, illustrated in Figure 4.4, in order 
to guarantee a feasible schedule two cases must be considered. Let F = [T2/T1J 
be the number^ of periods of ri entirely contained in T2. 

^ [x\ denotes the largest integer smaller than or equal to x, whereas [x] denotes the 
smallest integer greater than or equal to x. 
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Figure 4.3 Tasks scheduled by an algorithm different from RM. 
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Figure 4.4 Schedule produced by RM in two different conditions. 

Case 1. The computation time C\ is short enough that all requests of ri 
within the critical time zone of T2 are completed before the second 
request of r2. That is, Ci < T2 - FTi. 

In this case, from Figure 4.4a we can see that the task set is schedulable if 

(F + l ) C i + C 2 <T2. (4.2) 

We now show that inequality (4.1) implies (4.2). In fact, by multiplying both 
sides of (4.1) by F we obtain 

FCiH-FC2 <FTi, 

and, since F > 1, we can write 

FCi + C2 < FCi + FC2 < FTi. 
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Adding C\ to each member we get 

(F-f l ) C i + C 2 < F r i H - C i . 

Since we assumed that Ci < T2 — FT\, we have 

{F + l)Ci + C2 < FTi + Ci < Ts, 

which satisfies (4.2). 

Case 2. The execution of the last request of ri in the critical time zone of 
T2 overlaps the second request of T2. That is, Ci > T2 — FTi. 

In this case, from Figure 4.4b we can see that the task set is schedulable if 

F C i - f C s <FTi, (4.3) 

Again, inequality (4.1) implies (4.3). In fact, by multiplying both sides of (4.1) 
by F we obtain 

FCi -\-FC2 <FTu 

and, since F > 1, we can write 

FCi + C2 < FCi + FC2 < FTu 

which satisfies (4.3). 

Basically, it has been shown that, given two periodic tasks ri and r2, with 
Ti < T2, if the schedule is feasible by an arbitrary priority assignment, then 
it is also feasible by RM. That is, RM is optimal. This result can easily be 
extended to a set of n periodic tasks. We now show how to compute the least 
upper bound Uiub of the processor utilization factor for the RM algorithm. 
The bound is first determined for two tasks and then extended for an arbitrary 
number of tasks. 

4.2.2 Calcula t ion of Uiub for two t a sks 

Consider a set of two periodic tasks ri and r2, with Ti < T2. In order to 
compute Uiub for RM, we have to 

• Assign priorities to tasks according to RM, so that ri is the task with the 
highest priority; 
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Compute the upper bound Uub for the set by setting tasks ' computat ion 
times to fully utilize the processor; 

Minimize the upper bound Uub with respect to all other task parameters . 

As before, let F = [T2/T1J be the number of periods of r i entirely contained 
in T2. Wi thout loss of generality, the computat ion t ime C2 is adjusted to fully 
utilize the processor. Again two cases must be considered. 

Case 1. The computat ion t ime Ci is short enough tha t all requests of TI 
within the critical t ime zone of T2 are completed before the second 
request of T2. Tha t is, Ci < T2 — FTi. 

In this si tuation, depicted in Figure 4.5, the largest possible value of C2 is 

C 2 = T 2 - C i ( F + l ) , 

and the corresponding upper bound Uub is 

, , Ci C2 Ci T 2 - C i ( F + l ) 
Uub — T^ + ^^ = ^^ -r — Ti T2 Ti T, 

J-l J-2 

2 

-I 
Since the quanti ty in square brackets is negative, Uub is monotonically decreas­
ing in C i , and, being Ci < T2 — FTi, the minimum of Uub occurs for 

Ci =T2-FTi. 

Case 2. The execution of the last request of r i in the critical t ime zone of 
r2 overlaps the second request of T2. T h a t is, Ci > T2 — F T i . 

In this si tuation, depicted in Figure 4.6, the largest possible value of C2 is 

C 2 - ( r i - C i ) F , 
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Figure 4.5 The second request of r2 is released when r i is idle. 
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Figure 4.6 The second request of T2 is released when TI is active. 

and the corresponding upper bound Uub is 

Uub Ti n Ti n 
Ti ^ Ci Ci 
— F+ -^ -F = 
T2 Ti T2 
Ti ^ Ci 
— F H 
T2 T2 

Ti 
(4.4) 

Since the quantity in square brackets is positive, Uub is monotonically increasing 
in Ci and, being Ci > T2 - FTi, the minimum of Uub occurs for 

Ci=T2-FTi. 

In both cases, the minimum value of Uub occurs for 

Ci =T2-TiK 
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Hence, using the minimum value of Ci, from equation (4.4) we have 

- = 1-1(1-) = 
T2 T2 \T, 

T2 
F + 

Ti 
n,| (4.5) 

To simplify the notation, let G = T2/T1 - F. Thus, 

U = 
Tx 

(F + G^) : 

(F + G^) 

jF + G^) ^ 

T2ITX 

F + G^ 

{T2/Ti-F) + F F + G 

[F + G) - [G - G'^) 
F + G 

= 1 
g ( l - G) 

F + G • 
(4.6) 

Since 0 < G < 1, the term G(l — G) is nonnegative. Hence, U is monotoni-
cally increasing with F. As a consequence, the minimum of U occurs for the 
minimum value of F; namely, F = 1. Thus, 

U = 
l+G^ 
1+G • 

(4.7) 

Minimizing U over G we have 

dU_ 

dG 

2G(1 + G ) - ( 1 + G^) 
(1 + G)2 

G^ + 2G - 1 
(1 + G)2 ' 

and dU/dG = 0 for G^ + 2G - 1 = 0, which has two solutions: 

Gi = - l - \ / 2 
G2 = - H - v / 2 . 

Since 0 < G < 1, the negative solution G = Gi is discarded. Thus, from 
equation (4.7), the least upper bound of U is given for G = G2: 

Ulub = 
1 + ( N / 2 - 1 ) 2 4 - 2 \ / 2 
l + (v /2 - l ) 72 

= 2 ( \ / 2 - l ) . 
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1 F 
r ^ 

2 
3 
4 
5 

k* 

~7^ 
Ve 
VT2 
x/20 
\/30 

t/* 
0.828 
0.899 
0.928 
0.944 
0.954 

Table 4.1 Values of fc* and C/* as a function of F . 

That is, 
t// .6 = 2(2^/2 - 1) 0.83. (4.8) 

Notice that if T2 is a multiple of Ti, G = 0 and the processor utilization factor 
becomes 1. In general, the utiUzation factor for two tasks can be computed as 
a function of the ratio k = T2/T1. For a given F, from equation (4.5) we can 
write 

U F+{k-Fy 

Minimizing U over k we have 

dk 
= 1 

k-2F + 

F{F+l) 
fc2 ' 

F ( F + 1) 
k 

and dU/dk = 0 for k* = ^/F{F + 1). Hence, for a given F , the minimum value 
ofUis 

(7* = 2{y/F{F-\-l)-F). 

Table 4.1 shows some values of fc* and t/* as a function of F , whereas Figure 4.7 
shows the upper bound of t/ as a function of A:. 

4.2.3 Calcula t ion of Uiub for n t a sks 

From the previous computation, the conditions that allow to compute the least 
upper bound of the processor utilization factor are 

F = 1 
Ci = T2- FT^ 
C2 = ( T i - C i ) F , 
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Figure 4.7 Upper bound of the processor utilization factor as a function of 
the ratio k = T2/T1. 

which can be rewrit ten as 

Ti < T2< 2Ti 
Ci = T2- Ti 
C2 = 2Ti -T2. 

GeneraUzing for an arbi t rary set of n tasks, the worst conditions for the schedu-
labihty of a task set tha t fully utilizes the processor are 

f Ti < Tn< 2Ti 
Ci = T2- Ti 
C2 — T3 — T2 

^ n —1 — -Ln ~ J-n — 1 

[ C„ = Ti - (Ci + C2 + . . . + C „ _ i ) = 2 r i - T„. 

Thus , the processor utiHzation factor becomes 

^ ^ T2-T1 ^ T3-T2 ^ ^ T„ - Tn-i ^ 2Ti - T„ 
Ti Tn-1 T„ 

Defining 
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and noting that 
Tn 

R1R2 . . .Rn-l = TfT^ 
-LI 

the utihzation factor may be written as 

n - l n - l 

u = 
z = l 

To minimize U over Ri, i — 1 , . . . , n — 1, we have 

at/ _ 2 

Thus, defining P = R1R2 .. ^ Rn-i, U is minimum when 

f RiP = 2 
R2P = 2 

Rn-\P = 2. 

That is, when all Ri have the same value: 

R\ — R2 — ''' — Rn-i —2'^. 

Substituting this value in IJ we obtain 

= n ( 2 i / " - l ) . 

Therefore, for an arbitrary set of periodic tasks, the least upper bound of the 
processor utihzation factor under the Rate-Monotonic scheduUng algorithm is 

t/(„6 = n(2i/" - 1). (4.9) 

This bound decreases with n, and values for some n are shown in Table 4.2. 

For high values of n, the least upper bound converges to 

Viuh = ln2 ~ 0.69. 

In fact, with the substitution y = (2^/" — 1), we obtain n = i„)"^^), and hence 

l i m n ( 2 i / " - l ) ^ ( ln2) l im-—-^—-
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1 n 

nr 
2 
3 
4 
5 

Ulub 

1.000 
0.828 
0.780 
0.757 
0.743 

1 ^ 
re" 

7 
8 
9 
10 

Ulub 

0.735 
0.729 
0.724 
0.721 
0.718 

Table 4.2 Values of L /̂̂ b a^ ^ function of n. 

and since (by the Hospital's rule) 

y lim ——^—— = lim -— — = \\m.{y + 1) 
y^O\n{y + \) y-̂ O l/(y-f- 1) y^O^"" 

we have that 
lim Uiub{n) = In 2. 

= 1, 

4.2.4 Concluding remarks on R M 

To summarize the most important results derived in this section, the Rate-
Monotonic algorithm has been proved to be optimal among all fixed-priority 
assignments, in the sense that no other fixed-priority algorithms can schedule 
a task set that cannot be scheduled by RM. Moreover, RM guarantees that an 
arbitrary set of periodic tasks is schedulable if the total processor utilization U 
does not exceed a value of 0.69. 

Notice that this schedulability condition is sufficient to guarantee the feasibility 
of any task set, but it is not necessary. This means that, if a task set has an 
utilization factor greater than Uiub and less than one, nothing can be said on 
the feasibility of the set. A sufficient and necessary condition for the schedu­
lability under RM has been derived by Audsley et al. [ABRW91] for the more 
general case of periodic tasks with relative deadlines less than periods, and it 
is presented in Section 4.4. 

A simulation study carried out by Lehoczky, Sha, and Ding [LSD89] showed 
that for random task sets the processor utilization bound is approximately 
0.88. However, since RM is optimal among all static assignments, an improve­
ment of the processor utilization bound can be achieved only by using dynamic 
scheduling algorithms. 
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4.3 EARLIEST DEADLINE FIRST 

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that 
selects tasks according to their absolute deadlines. Specifically, tasks with ear­
lier deadlines will be executed at higher priorities. Since the absolute deadline 
of a periodic task depends on the current j th instance as 

di^j = ^i-\-{j-l)Ti + Di, 

EDF is a dynamic priority assignment. Moreover, it is intrinsically preemptive: 
the currently executing task is preempted whenever another periodic instance 
with earlier deadline becomes active. 

Notice that EDF does not make any specific assumption on the periodicity of 
the tasks; hence, it can be used for scheduling periodic as well as aperiodic 
tasks. For the same reason, the optimality of EDF, proved in Chapter 3 for 
aperiodic tasks, also holds for periodic tasks. 

4.3.1 Schedulability analysis 

Under the assumptions Al, A2, A3, and A4, the schedulability of a periodic task 
set handled by EDF can be verified through the processor utilization factor. In 
this case, however, the least upper bound is one; therefore, tasks may utilize 
the processor up to 100% and still be schedulable. In particular, the following 
theorem holds [LL73, SBS95]: 

Theorem 4.1 A set of periodic tasks is schedulable with EDF if and only if 

n ^ 

^ Ti -

Proof. Only if. We show that a task set cannot be scheduled \i U > 1. 
In fact, by defining T = T1T2 .. .Tn, the total demand of computation time 
requested by all tasks in T can be calculated as 

T̂  rp 

1 -^i 

liU > 1 - that is, if the total demand UT exceeds the available processor time 
T - there is clearly no feasible schedule for the task set. 
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Figure 4.8 Interval of continuous utilization in an EDF schedule before a 
time-overflow. 

//. We show the sufficiency by contradiction. Assume that the condition U <\ 
is satisfied and yet the task set is not schedulable. Let 2̂ be the instant at which 
the time-overflow occurs and let [̂ 1,̂ 2] be the longest interval of continuous 
utilization, before the overflow, such that only instances with deadline less 
than or equal to 2̂ are executed in [̂ 1,̂ 2] (see Figure 4.8 for explanation). 
Note that i\ must be the release time of some periodic instance. Let Cp{ti,t2) 
be the total computation time demanded by periodic tasks in [̂ 1, ̂ 2], which can 
be computed as 

Cp{ti,t2) 

Now, observe that 

n 

Cp{ti,t2) = 2^ 

rk>ti,dk<t2 «=1 
Ti 

Ci. (4.10) 

Ti Ci <Y. 
t2-tl 

Ti 
Ci = {t2-h)U. 

Since a deadline is missed at t2, Cp{ti,t2) must be greater than the available 
processor time (̂ 2 — <i); thus, we must have 

{t2-ti) < CpihM) < {t2-tl)U. 

That is, U > 1, which is a contradiction, Q 
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Figure 4.9 Schedule produced by RM (a) and EDF (b) on the same set of 
periodic ta^ks. 

4.3.2 An example 

Consider the periodic task set illustrated in Figure 4.9, for which the processor 
utilization factor is 

This means that 97% of the processor time is used to execute the periodic tasks, 
whereas the CPU is idle in the remaining 3%. Being U' > In 2, the schedulability 
of the task set cannot be guaranteed under RM, whereas it is guaranteed under 
EDF. Indeed, as shown in Figure 4.9a, RM generates a time-overflow at time 
t = 7j whereas EDF completes all tasks within their deadlines (see Figure 4.9b). 
Another important difference between RM and EDF concerns the number of 
preemptions occurring in the schedule. As shown in Figure 4.9, under RM 
every instance of task r2 is preempted, for a total number of five preemptions 
in the interval T = T1T2. Under EDF, the same task is preempted only once 
in T. The small number of preemptions in EDF is a direct consequence of the 
dynamic priority assignment, which at any instant privileges the task with the 
earliest deadline, independently of tasks' periods. 
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4.4 DEADLINE MONOTONIC 

The algorithms and the schedulabihty bounds illustrated in the previous sec­
tions rely on the assumptions Al, A2, A3, and A4 presented at the beginning 
of this chapter. In particular, assumption A3 imposes a relative deadline equal 
to the period, allowing an instance to be executed anywhere within its period. 
This condition could not always be desired in real-time applications. For ex­
ample, relaxing assumption A3 would provide a more flexible process model, 
which could be adopted to handle tasks with jitter constraints or activities with 
short response times compared to their periods. 

The Deadline Monotonic (DM) priority assignment weakens the "period equals 
deadline" constraint within a static priority scheduling scheme. This algorithm 
was first proposed in 1982 by Leung and Whitehead [LW82] as an extension of 
Rate Monotonic where tasks can have a relative deadline less than their period. 
Specifically, each periodic task r̂  is characterized by four parameters: 

• A phase ^ i ; 

• A worst-case computation time Ci (constant for each instance); 

• A relative deadline Di (constant for each instance); 

• A period T .̂ 

These parameters are illustrated in Figure 4.10 and have the following relation­
ships: 

Ci<Di<Ti 
ri,k = ^i + {k- l)Ti 
di,k = Vi^k + Di. 

T i 

Ci 

D i 

Figure 4.10 Task parameters in Deadline-Monotonic scheduling. 
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According to the DM algorithm, each task is assigned a priority inversely pro­
portional to its relative deadline. Thus, at any instant, the task with the 
shortest relative deadline is executed. Since relative deadlines are constant, 
DM is a static priority assignment. As RM, DM is preemptive; that is, the 
currently executing task is preempted by a newly arrived task with shorter 
relative deadline. 

The Deadline-Monotonic priority assignment is optimal,^ meaning that if any 
static priority scheduling algorithm can schedule a set of tasks with deadlines 
unequal to their periods, then DM will also schedule that task set. 

4.4.1 Schedulability analysis 

The feasibility of a set of tasks with deadlines unequal to their periods could 
be guaranteed using the Rate-Monotonic schedulability test, by reducing tasks' 
periods to relative deadlines: 

J2§: < n(2i/"-l). 
1 = 1 

However, such a test would not be optimal as the workload on the processor 
would be overestimated. A less pessimistic schedulability test can be derived 
by noting that 

• The worst-case processor demand occurs when all tasks are released simul­
taneously; that is, at their critical instants; 

• For each task r^, the sum of its processing time and the interference (pre­
emption) imposed by higher priority tasks must be less than or equal to 

Assuming that tasks are ordered by increasing relative deadlines, so that 

i<j <=^ Di<Dj, 

such a test is given by 

\fi:l<i<n Ci + h < Di, (4.11) 

•^The proof of DM optimality is similar to the one done for RM and it can be found in 
[LW82]. 
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Xk 

Xi -TL 

Figure 4.11 
priority tasks. 

More accurate calculation of the interference on r̂  by higher 

where li is a measure of the interference on ri, which can be computed as the 
sum of the processing times of all higher-priority tasks released before Di: 

Di 
Cj. 

Notice that this test is sufficient but not necessary for guaranteeing the schedu-
lability of the task set. This is due to the fact that U is calculated by assuming 
that each higher-priority task TJ exactly interferes \j&~\ times on r^. However, 
as shown in Figure 4.11, the actual interference can be smaller than 7 ,̂ since 
Ti may terminate earlier. 

To find a sufficient and necessary schedulability test for DM, the exact inter­
leaving of higher-priority tasks must be evaluated for each process. In general, 
this procedure is quite costly since, for each task TI, it requires the construc­
tion of the schedule until Di. Audsley et al. [ABRW92, ABR+93] proposed 
an efficient method for evaluating the exact interference on periodic tasks and 
derived a sufficient and necessary schedulability test for DM. 

4.4.2 Sufficient and necessary schedulability 
test 

According to the method proposed by Audsley at al., the longest response time 
Ri of a periodic task r̂  is computed, at the critical instant, as the sum of its 
computation time and the interference due to preemption by higher-priority 
tasks: 
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where 
i-l 

3 = 1 
T c,. 

Ri 
Cj. (4.12) 

Hence, 
2 - 1 

Ri = Ci + y 
3 = 1 

No simple solution exists for this equation since Ri appears on both sides. Thus, 
the worst-case response time of task r̂  is given by the smallest value of Ri that 
satisfies equation (4.12). Notice, however, that only a subset of points in the 
interval [0,Di] need to be examined for feasibility. In fact, the interference on 
Ti only increases when there is a release of a higher-priority task. 

To simplify the notation, let R^ be the A:th estimate of Ri and let /f be the 
interference on task Ti in the interval [0,i?f]: 

Rf 
C,. (4.13) 

Then the calculation of Ri is performed as follows: 

1. Iteration starts with R^ = Ci, which is the first point in time that TJ could 
possibly complete. 

2. The actual interference /f in the interval [0, i?f ] is computed by equation 
(4.13). 

3. If I^ -\-Ci — R^, then R^ is the actual worst-case response time of task r^; 
that is, Ri = R^. Otherwise, the next estimate is given by 

and the iteration continues from step 2. 

Once Ri is calculated, the feasibility of task Ti is guaranteed if and only if 
Ri < Di. 

To clarify the schedulability test, consider the set of periodic tasks shown in 
Table 4.3, simultaneously activated at time ^ = 0. In order to guarantee r4, we 
have to calculate R4 and verify that R4 < D4. The schedule produced by DM 
is illustrated in Figure 4.12, and the iteration steps are shown below. 



100 C H A P T E R 4 

n 
^2 

T3 

T4 

Ci 

1 
1 
2 
1 

T, 

4 
5 
6 
11 

Di 

3 
4 
5 
10 

Table 4.3 A set of periodic tcisks with deadlines less than periods. 

-ci 

'^2 

^̂ 3 

T4 
n r 
3 4 10 II 12 

Figure 4.12 Example of schedule produced by DM. 
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Step 0: R^^ = C4 = 1, but /^ = 4 and I^ + C4 > R^^, 
hence r^ does not finish at R^. 

Step 1: Rl = l2-\-C4 = 5, but / ] = 5 and / ] + C4 > Rl 
hence T4 does not finish at Rl. 

Step 2: Rl = / ] + C4 = 6, but / | = 6 and / | + C4 > i? | 
hence r4 does not finish at Rl. 

Step 3: Rl = 7 | + C4 = 7, but 7 | = 7 and / | + C4 > i^| 
hence r4 does not finish at Rl. 

Step 4: î ^ = / | -h C4 ^ 9, but / | = 9 and I^ -]-C4 > Rj 
hence T4 does not finish at R^. 

Step 5: Rl = Ij-\-C4 = 10, but / | = 9 and / | + C4 = i?^ 
hence T4 finishes at R4 = 10. 

Since R4 < D4, T4 is schedulable within its deadhne. If Ri < Di for all tasks, 
we conclude that the task set is schedulable by DM. Such a schedulability test 
can be performed by the algorithm illustrated in Figure 4.13. 

DM_guarantee (F) { 

} 

for (each TJ € F) { 
7 = 0; 
d o { 

R = I + Ci; 

if {R > Di) 

^=Er=i [ 
} while (/ + d 

} 

return 

> R)\ 

return(SCHEDULABLE); 

(UNSCHEDULABLE); 

Figure 4 .13 Algorithm for testing the schedulabihty of a periodic task set T 
under DeadHne Monotonic. 
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4.5 EDF WITH DEADLINES LESS THAN 
PERIODS 

Under EDF, the analysis of periodic tasks with deadUnes less than periods 
can be performed using a processor demand criterion. This method has been 
described by Baruah, Rosier, and Howell in [BRH90] and later used by Jeffay 
and Stone [JS93] to account for interrupt handling costs under EDF. Here, we 
first illustrate this approach for the case of deadlines equal to periods and then 
extend it to more general task models. 

4.5.1 The processor demand approach 

In general, the processor demand of a task TJ in any interval [t,t + L] is the 
amount of processing time required by r̂  in [t, t + L] that has to complete at 
or before t -\- L. In a deadline-based system, it is the processing time required 
in [t, t -\- L] that has to be executed with deadlines less than or equal to ^ + L. 

For a set of periodic tasks (with deadlines equal to periods) invoked at time 
^ = 0 the cumulative processor demand in any interval [0, L] is the total amount 
of processing time Cp(0, L) that has to be executed with deadlines less than or 
equal to L. That is, 

Cp(0,L) = J 2 ^ ^ 
i=l 

Ti 
Ci. 

Given this definition, the schedulability of a periodic task set is guaranteed if 
and only if the cumulative processor demand in any interval [0, L] is less than 
the available time; that is, the interval length L. This is stated by the following 
theorem: 

Theorem 4.2 (JefFay and Stone) A set of periodic tasks is schedulahle by 
EDF if and only if for all L, L >0, 

^ ^ EI ^ k- (4.14) 
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Proof. The theorem is proved by showing that equation (4.14) is equivalent 
to the classical Liu and Layland's condition 

Ci 
^ = E ^ ^ i - (4.15) 

i=l 

(4.15) => (4.14). If ^ < 1, then for all L, L > 0, 

L>UL = ±(^)c, >± L_ 
Ci. 

To demonstrate (4.15) <^ (4.14) we show that -i(4.15) ^ ->(4.14). That is, we 
assume U > 1 and prove that there exist an L > 0 for which (4.14) does not 
hold. If ^ > 1, then for L = lcm{Ti,... ,Tn), 

^<^^ = E ^ F ' = E 
i=\ 

Tr 

L^ 

^ c.. 

D 

Notice that to apply Theorem 4.2 it suffices to test equation (4.14) only for 
values of L equal to release times less than the hyperperiod H. In fact, if 
equation (4.14) holds for L = r^, it will also hold for any L G [rk,rk-\-i), since 

yie [rfc,rfc+i). 
L 

7^ 
rk_ 

The values of L for which equation (4.14) has to be tested can still be reduced to 
the set of release times within the busy period. The busy period is the smallest 
interval [0, L] in which the total processing time W{L) requested in [0,L] is 
completely executed. The quantity W{L) can be computed as 

W{L) - Yl Ci. (4.16) 

Thus, the busy period Bp can be defined as 

Bp = min{L | W{L) = L} 

and computed by the algorithm shown in Figure 4.14. 

Notice that, when the system is overloaded, the processor is always busy and 
the busy period is equal to infinity. On the other hand, if the system is not 
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busy .period { 

V = W{L)\ 

H = lcm{Ti,... ,Tn); 

while (L' # L) and {V < H) { 
L = L'; 
L' = W(L); 

} 
if (V <H) Bp = L; 

else Bp = INFINITY; 

} 

Figure 4.14 Algorithm for computing the busy period. 

overloaded, the busy period coincides either with the beginning of an idle time 
(see Figure 4.15a) or with the release of a periodic instance (see Figure 4.15b). 

-Ci 

^ 2 

X l 

^ 2 

H H I w ^ L ^ 
n,i 

^2,1 

1,1 

^2,1 

n,2 n,3 

(a) 

.1,2 1,3 

n,4 

JiiiiiiiH p^^^^a, l i l i l i iM 1 ^ ^ ^ ^ 

1,4 

iL_-L 
(b) 

Figure 4.15 Examples of finite busy periods. 
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'̂ 1 fe^»a^3 
^-^ 

time overflow 

^2 

t 2 

li^-1-^yl 

i-v>j^>y»^gi-i 

I^MW..-ht.ml 

6 8 10 12 16 

Figure 4.16 Examples of processor demand analysis. 

L 

6 
8 
10 
12 

Cp(0,L) 

3 
5 
10 
13 

result 

OK 
OK 
OK 
N O 

Table 4.4 Results of the processor demand criterion. 

Based on the previous observations, to apply Theorem 4.2, equation (4.14) can 
be tested for all L e 7Z, where 

7^ = {nj I Tij < min(j5p, H), I < i < n, j > 1}. 

Example 

To illustrate the processor demand criterion, consider the example shown in 
Figure 4.16, where three periodic tasks with periods 6, 8, 10, and processing 
times 3, 2, 5, respectively, are executed under EDF. In this case, the set check­
ing points for equation (4.14) is given by 7^ = {6,8,10,12,16,. . .}. Applying 
Theorem 4.2 we have the results shown in Table 4.4. 
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4.5.2 Deadlines less than periods 

The processor demand criterion can easily be extended to deal with tasks with 
deadlines different than periods. For example, consider the two tasks shown in 
Figure 4.17. In this case, the processor demands for tasks ri and T2 in [0, L] 
are clearly given by 

Ci(0,L) = 

C2(0,L) = 

In general, we can write 

Ci(0,L) = 
L~Di 

+ l]Ci (4.17) 

1:2 ^ ^ j V ^^B Y ^^B 

Figure 4.17 Processor demand when deadlines are less than periods. 

In summary, the schedulability of a generic task set can be tested by the fol­
lowing theorem [BRH90], whose proof is very similar to the one shown for 
Theorem 4.2. 

Theorem 4.3 If V = {di^k \ di^k = kTi + Di, di^k < min{Bp,H), I < i < 
n, k > 0}, then a set of periodic tasks with deadlines less than periods is 
schedulable by EDF if and only if 

(4.18) 
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4.6 SUMMARY 

In conclusion, the problem of scheduling a set of independent and preemptable 
periodic tasks has been solved both under fixed and dynamic priority assign­
ments. The Rate-Monotonic (RM) algorithm is optimal among all fixed-priority 
assignments, whereas the Eearliest Deadline First (EDF) algorithm is optimal 
among all dynamic priority assignments. When deadlines are equal to periods, 
the guarantee test for both algorithms can be performed in 0{n) (being n the 
number of periodic tasks in the set), using the processor utilization approach. 
The test for RM, however, provides only a sufficient condition for guaranteeing 
the feasibility of the schedule. 

In the general case in which deadlines can be less or equal to periods, the 
schedulability analysis becomes more complex and can be performed in pseudo-
polynomial time [BRH90]. Under fixed-priority assignments, the feasibility of 
the task set can be tested using the response time approach, which uses a 
recurrent formula to calculate the worst-case finishing time of any task. Under 
dynamic priority assignments, the feasibility can be tested using the processor 
demand approach. In both cases the test provides a necessary and sufficient 
condition. The various methods are summarized in Figure 4.18. 

D ; < T ; 

Static 

priority 

Dynamic 

priority 

RM 

Processor utilization approach 

U < n(2 ^^''- J) 

EDF 

Processor utilization approach 

U < J 

DM 

Response time approach 

i- J 

Cj < 

EDF * 

Processor demand approach 

L- £>, 

- ) 

Di 

Ci 

Figure 4.18 Summary of guarantee tests for periodic tasks. 



108 C H A P T E R 4 

Exercises 

4.1 Verify the schedulability and construct the schedule according to the RM 
algorithm for the following set of periodic tasks: 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

~c~] 
Ti 1 

1 Ti 

1 
3 

T2 

1 
4 

4.2 Given the following set of periodic tasks 

~cr] 
Ti 

1 '̂ i 
["T" 

4 

T2 

2 
6 

T3 

3 
10 j 

verify the schedulability under RM using the processor utilization ap­
proach. Then, perform the worst-case response time analysis and con­
struct the schedule. 

Verify the schedulability under RM and construct the schedule of the 
following task set: 

~c~^ 
Ti 

'̂ 1 

1 
4 

^2 

2 
6 

T3 

3 
8 

Verify the schedulability under EDF of the task set shown in Exercise 
4.3, and then construct the corresponding schedule. 

Compute the busy period for the task set described in Exercise 4.2. 

Compute the busy period for the task set described in Exercise 4.3. 

Verify the schedulability under EDF and construct the schedule of the 
following task set: 

~c~\ 
Di 
Ti 

r\ 

r2~ 
5 
6 

r2 

2 
4 
8 

T3 

4 
8 
12 

Verify the schedulability of the task set described in Exercise 4.7 using 
the Deadline-Monotonic algorithm. Then construct the schedule. 




