
GLOSSARY 

Absolute jitter The difference between the maximum and the minimum 
start time (relative to the request time) of all instances of a periodic task. 

Acceptance test A schedulability test performed at the arrival time of a 
new task, whose result determines whether the task can be accepted into 
the system or rejected. 

Access protocol A programming scheme that has to be followed by a set of 
tasks that want to use a shared resource. 

Activation A kernel operation that moves a task from a sleeping state to an 
active state, from where it can be scheduled for execution. 

Aperiodic task A type of task that consists of a sequence of identical jobs 
(instances), activated at irregular intervals. 

Arrival rate The average number of jobs requested per unit of time. 

Arrival t ime The time instant at which a job or a task enters the ready 
queue. It is also called request time. 

Background scheduling Task-management policy used to execute low-priority 
tasks in the presence of high-priority tasks. Lower-priority tasks are executed 
only when no high-priority tasks are active. 

Blocking A job is said to be blocked when it has to wait for a job having a 
lower priority. 

Buffer A memory area shared by two or more tasks for exchanging data. 
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Capacity The maximum amount of time dedicated by a periodic server, in 
each period, to the execution of a service. 

Ceiling Priority level associated with a semaphore or a resource according to 
an access protocol. 

Ceiling blocking A special form of blocking introduced by the Priority Ceil­
ing Protocol. 

Channel A logical link through which two or more tasks exchange informa­
tion by a message-passing mechanism. 

Chained blocking A sequence of blocking experienced by a task while at­
tempting to access a set of shared resources. 

Clairvoyance An ideal property of a scheduling algorithm that implies the 
future knowledge of the arrival times of all the tasks that are to be scheduled. 

Competitive factor A scheduling algorithm A is said to have a competitive 
factor ipA if and only if it can guarantee a cumulative value at least (fA times 
the cumulative value achieved by the optimal clairvoyant scheduler. 

Completion time The time at which a job ends to execute. It is also called 
finishing time. 

Computation time The amount of time required by the processor to execute 
a job without interruption. It is also called service time or processing time. 

Concurrent processes Processes that overlap in time. 

Context A set of data that describes the state of the processor at a particular 
time, during the execution of a task. Typically the context of a task is the 
set of values taken by the processor registers at a particular instant. 

Context switch A kernel operation consisting in the suspension of the cur­
rently executing job for assigning the processor to another ready job (typi­
cally the one with the highest priority). 
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Creation A kernel operation that allocates and initializes all data structures 
necessary for the management of the object being created (such as task, 
resource, communication channel, and so on). 

Critical instant The time at which the release of a job produces the largest 
response time. 

Critical section A code segment subject to a mutual exclusion. 

Critical zone The interval between a critical instant of a job and its corre­
sponding finishing time. 

Cumulative value The sum of the task values gained by a scheduling algo­
rithm after executing a task set. 

Deadline The time within which a real-time task should complete its execu­
tion. 

Deadlock A situation in which two or more processes are waiting indefinitely 
for events that will never occur. 

Direct blocking A form of blocking due to the attempt of accessing an 
exclusive resource, held by another task. 

Dispatching A kernel operation consisting in the assignment of the processor 
to the task having highest priority. 

Domino effect A phenomenon in which the arrival of a new task causes all 
previously guaranteed tasks to miss their deadlines. 

Dynamic scheduling A scheduling method in which all active jobs are re­
ordered every time a new job enters the system or a new event occurs. 

Event An occurrence that requires a system reaction. 

Exceeding t ime The interval of time in which a job stays active after its 
deadline. It is also called tardiness. 
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Exclusive resource A shared resource that cannot be accessed by more than 
one task at a time. 

Feasible schedule A schedule in which all real-time tasks are executed 
within their deadlines and all the other constraints, if any, are met. 

Finishing time The time at which a job ends to execute. It is also called 
completion time. 

Firm task A task in which each instance must be either guaranteed to com­
plete within its deadline or entirely rejected. 

Guarantee A schedulability test that allows to verify whether a task or a set 
of tasks can complete within the specified timing constraints. 

Hard task A task whose instances must be a priori guaranteed to complete 
within their deadlines. 

Hyperperiod The minimum time interval after which the schedule repeats 
itself. For a set of periodic tasks, it is equal to the least common multiple of 
all the periods. 

Idle state The state in which a task is not active and waits to be activated. 

Idle t ime Time in which the processor does not execute any task. 

Instance A particular execution of a task. A single job belonging to the 
sequence of jobs that characterize a periodic or an aperiodic task. 

Interarrival time The time interval between the activation of two consecu­
tive instances of the same task. 

Interrupt A timing signal that causes the processor to suspend the execution 
of its current process and start another process. 

Jitter The difference between the start times (relative to the request times) 
of two or more instances of a periodic task. See also absolute jitter and 
relative jitter. 
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Job A computation in which the operations, in the absence of other activities, 
are sequentially executed by the processor until completion. 

Kernel An operating environment that enables a set of tasks to execute con­
currently on a single processor. 

Lateness The difference between the finishing time of a task and its deadline 
[L — f — d). Notice that a negative lateness means that a task completed 
before its deadline. 

Laxity The maximum delay that a job can experience after its activation and 
still complete within its deadline. At the arrival time, the laxity is equal to 
the relative deadline minus the computation time (D — C). It is also called 
slack time. 

Lifetime The maximum time that can be represented inside the kernel. 

Load Computation time demanded by a task set in an interval, divided by 
the length of the interval. 

Mailbox A communication buffer characterized by a message queue shared 
between two or more jobs. 

Message A set of data, organized in a predetermined format for exchanging 
information among tasks. 

Mutual Exclusion A kernel mechanism that allows to serialize the execution 
of concurrent tasks on critical sections of code. 

Non-preemptive Scheduling A form of scheduling in which jobs, once 
started, can continuously execute on the processor without interruption. 

Optimal algorithm A scheduling algorithm that minimizes some cost func­
tion defined over the task set. 

Overhead The time required by the processor to manage all internal mech­
anisms of the operating system, such as queuing jobs and messages, updat­
ing kernel data structures, performing context switches, activating interrupt 
handlers, and so on. 
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Overload Exceptional load condition on the processor, such that the compu­
tation time demanded by the tasks in a certain interval exceeds the available 
processor time in the same interval. 

Period The interval of time between the activation of two consecutive in­
stances of a periodic task. 

Periodic task A type of task that consists of a sequence of identical jobs 
(instances), activated at regular intervals. 

Phase The time instant at which a periodic task is activated for the first 
time, measured with respect to some reference time. 

Polling A service technique in which the server periodically examines the 
requests of its clients. 

Port A general intertask communication mechanism based on a message pass­
ing scheme. 

Precedence graph A directed acyclic graph that describes the precedence 
relations in a group of tasks. 

Precedence constraint Dependency relation between two or more tasks 
that specifies that a task cannot start executing before the completion of 
one or more tasks (called predecessors). 

Predictability An important property of a real-time system that allows to 
anticipate the consequence of any scheduling decision. 

Preemption An operation of the kernel that interrupts the currently exe­
cuting job and assigns the processor to a more urgent job ready to execute. 

Preemptive Scheduling A form of scheduling in which jobs can be inter­
rupted at any time and the processor assigned to more urgent jobs ready to 
execute. 

Priority A number associated with a task and used by the kernel to establish 
an order of precedence among tasks competing for a common resource. 
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Priority Inversion A phenomenon for which a task is blocked by a lower-
priority task for an unbounded amount of time. 

Process A computation in which the operations are executed by the proces­
sor one at a time. A process may consist of a sequence of identical jobs, also 
called instances. The words process and task are often used as synonyms. 

Processing time The amount of time required by the processor to execute a 
job without interruption. It is also called computation time or service time. 

Program A description of a computation in a formal language, called a Pro­
gramming Language. 

Push-through blocking A form of blocking introduced by the Priority In­
heritance and by the Priority Ceiling protocols. 

Queue A set of jobs waiting for a given type of resource and ordered according 
to some parameter. 

Relative Jitter The maximum difference between the start times (relative 
to the request times) of two consecutive instances of a periodic task. 

Request time The time instant at which a job or a task requests a service 
to the processor. It is also called arrival time. 

Resource Any entity (processor, memory, program, data, and so on) that 
can be used by tasks to carry on their computation. 

Resource constraint Dependency relation among tasks that share a com­
mon resource used in exclusive mode. 

Response time The time interval between the request time and the finishing 
time of a job. 

Schedulable task set A task set for which there exists a feasible schedule. 

Schedule An assignment of tasks to the processor, so that each task is exe­
cuted until completion. 
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Scheduling An activity of the kernel that determines the order in which 
concurrent jobs are executed on a processor. 

Semaphore A kernel data structure used to synchronize the execution of 
concurrent jobs. 

Server A kernel process dedicated to the management of a shared resource. 

Service t ime The amount of time required by the processor to execute a job 
without interruption. It is also called computation time or processing time. 

Shared resource A resource that is accessible by two or more processes. 

Slack t ime The maximum delay that a job can experience after its activation 
and still complete within its deadline. At the arrival time, the slack is equal 
to the relative deadline minus the computation time (D — C). It is also called 
laxity. 

Soft task A task whose instances should be possibly completed within their 
deadlines, but no serious consequences occur if a deadline is missed. 

Sporadic task An aperiodic task characterized by a minimum interarrival 
time between consecutive instances. 

Start t ime The time at which a job starts executing for the first time. 

Starvation A phenomenon for which an active job waits for the processor 
for an unbounded amount of time. 

Static scheduling A method in which all scheduling decisions are precom-
puted off-line, and jobs are executed in a predetermined fashion, according 
to a time-driven approach. 

Synchronization Any constraint that imposes an order to the operations 
carried out by two or more concurrent jobs. A synchronization is typically 
imposed for satisfying precedence or resource constraints. 

Tardiness The interval of time in which a job stays active after its deadline. 
It is also called exceeding time. 
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Task A computation in which the operations are executed by the processor 
one at a time. A task may consist of a sequence of identical jobs, also called 
instances. The words process and task are often used as synonyms. 

Task control block A kernel data structure associated with each task con­
taining all the information necessary for task management. 

Tick The minimum interval of time that is handled by the kernel. It defines 
the time resolution and the time unit of the system. 

Timeout The time limit specified by a programmer for the completion of an 
action. 

Time-overflow Deadline miss. A situation in which the execution of a job 
continues after its deadline. 

Timesharing A kernel mechanism in which the available time of the proces­
sor is divided among all active jobs in time slices of the same length. 

Time slice A continuous interval of time in which a job is executed on the 
processor without interruption. 

Utilization factor The fraction of the processor time utilized by a set of 
periodic tasks. 

Utility function A curve that describes the value of a task as a function of 
its finishing time. 

Value A task parameter that describes the relative importance of a task with 
respect to the other tasks in the system. 

Value Density The ratio between the value of a task and its computation 
time. 
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