
GLOSSARY 

Absolute jitter The difference between the maximum and the minimum 
start time (relative to the request time) of all instances of a periodic task. 

Acceptance test A schedulability test performed at the arrival time of a 
new task, whose result determines whether the task can be accepted into 
the system or rejected. 

Access protocol A programming scheme that has to be followed by a set of 
tasks that want to use a shared resource. 

Activation A kernel operation that moves a task from a sleeping state to an 
active state, from where it can be scheduled for execution. 

Aperiodic task A type of task that consists of a sequence of identical jobs 
(instances), activated at irregular intervals. 

Arrival rate The average number of jobs requested per unit of time. 

Arrival t ime The time instant at which a job or a task enters the ready 
queue. It is also called request time. 

Background scheduling Task-management policy used to execute low-priority 
tasks in the presence of high-priority tasks. Lower-priority tasks are executed 
only when no high-priority tasks are active. 

Blocking A job is said to be blocked when it has to wait for a job having a 
lower priority. 

Buffer A memory area shared by two or more tasks for exchanging data. 



354 GLOSSARY 

Capacity The maximum amount of time dedicated by a periodic server, in 
each period, to the execution of a service. 

Ceiling Priority level associated with a semaphore or a resource according to 
an access protocol. 

Ceiling blocking A special form of blocking introduced by the Priority Ceil­
ing Protocol. 

Channel A logical link through which two or more tasks exchange informa­
tion by a message-passing mechanism. 

Chained blocking A sequence of blocking experienced by a task while at­
tempting to access a set of shared resources. 

Clairvoyance An ideal property of a scheduling algorithm that implies the 
future knowledge of the arrival times of all the tasks that are to be scheduled. 

Competitive factor A scheduling algorithm A is said to have a competitive 
factor ipA if and only if it can guarantee a cumulative value at least (fA times 
the cumulative value achieved by the optimal clairvoyant scheduler. 

Completion time The time at which a job ends to execute. It is also called 
finishing time. 

Computation time The amount of time required by the processor to execute 
a job without interruption. It is also called service time or processing time. 

Concurrent processes Processes that overlap in time. 

Context A set of data that describes the state of the processor at a particular 
time, during the execution of a task. Typically the context of a task is the 
set of values taken by the processor registers at a particular instant. 

Context switch A kernel operation consisting in the suspension of the cur­
rently executing job for assigning the processor to another ready job (typi­
cally the one with the highest priority). 



Glossary 355 

Creation A kernel operation that allocates and initializes all data structures 
necessary for the management of the object being created (such as task, 
resource, communication channel, and so on). 

Critical instant The time at which the release of a job produces the largest 
response time. 

Critical section A code segment subject to a mutual exclusion. 

Critical zone The interval between a critical instant of a job and its corre­
sponding finishing time. 

Cumulative value The sum of the task values gained by a scheduling algo­
rithm after executing a task set. 

Deadline The time within which a real-time task should complete its execu­
tion. 

Deadlock A situation in which two or more processes are waiting indefinitely 
for events that will never occur. 

Direct blocking A form of blocking due to the attempt of accessing an 
exclusive resource, held by another task. 

Dispatching A kernel operation consisting in the assignment of the processor 
to the task having highest priority. 

Domino effect A phenomenon in which the arrival of a new task causes all 
previously guaranteed tasks to miss their deadlines. 

Dynamic scheduling A scheduling method in which all active jobs are re­
ordered every time a new job enters the system or a new event occurs. 

Event An occurrence that requires a system reaction. 

Exceeding t ime The interval of time in which a job stays active after its 
deadline. It is also called tardiness. 



356 GLOSSARY 

Exclusive resource A shared resource that cannot be accessed by more than 
one task at a time. 

Feasible schedule A schedule in which all real-time tasks are executed 
within their deadlines and all the other constraints, if any, are met. 

Finishing time The time at which a job ends to execute. It is also called 
completion time. 

Firm task A task in which each instance must be either guaranteed to com­
plete within its deadline or entirely rejected. 

Guarantee A schedulability test that allows to verify whether a task or a set 
of tasks can complete within the specified timing constraints. 

Hard task A task whose instances must be a priori guaranteed to complete 
within their deadlines. 

Hyperperiod The minimum time interval after which the schedule repeats 
itself. For a set of periodic tasks, it is equal to the least common multiple of 
all the periods. 

Idle state The state in which a task is not active and waits to be activated. 

Idle t ime Time in which the processor does not execute any task. 

Instance A particular execution of a task. A single job belonging to the 
sequence of jobs that characterize a periodic or an aperiodic task. 

Interarrival time The time interval between the activation of two consecu­
tive instances of the same task. 

Interrupt A timing signal that causes the processor to suspend the execution 
of its current process and start another process. 

Jitter The difference between the start times (relative to the request times) 
of two or more instances of a periodic task. See also absolute jitter and 
relative jitter. 



Glossary 357 

Job A computation in which the operations, in the absence of other activities, 
are sequentially executed by the processor until completion. 

Kernel An operating environment that enables a set of tasks to execute con­
currently on a single processor. 

Lateness The difference between the finishing time of a task and its deadline 
[L — f — d). Notice that a negative lateness means that a task completed 
before its deadline. 

Laxity The maximum delay that a job can experience after its activation and 
still complete within its deadline. At the arrival time, the laxity is equal to 
the relative deadline minus the computation time (D — C). It is also called 
slack time. 

Lifetime The maximum time that can be represented inside the kernel. 

Load Computation time demanded by a task set in an interval, divided by 
the length of the interval. 

Mailbox A communication buffer characterized by a message queue shared 
between two or more jobs. 

Message A set of data, organized in a predetermined format for exchanging 
information among tasks. 

Mutual Exclusion A kernel mechanism that allows to serialize the execution 
of concurrent tasks on critical sections of code. 

Non-preemptive Scheduling A form of scheduling in which jobs, once 
started, can continuously execute on the processor without interruption. 

Optimal algorithm A scheduling algorithm that minimizes some cost func­
tion defined over the task set. 

Overhead The time required by the processor to manage all internal mech­
anisms of the operating system, such as queuing jobs and messages, updat­
ing kernel data structures, performing context switches, activating interrupt 
handlers, and so on. 



358 GLOSSARY 

Overload Exceptional load condition on the processor, such that the compu­
tation time demanded by the tasks in a certain interval exceeds the available 
processor time in the same interval. 

Period The interval of time between the activation of two consecutive in­
stances of a periodic task. 

Periodic task A type of task that consists of a sequence of identical jobs 
(instances), activated at regular intervals. 

Phase The time instant at which a periodic task is activated for the first 
time, measured with respect to some reference time. 

Polling A service technique in which the server periodically examines the 
requests of its clients. 

Port A general intertask communication mechanism based on a message pass­
ing scheme. 

Precedence graph A directed acyclic graph that describes the precedence 
relations in a group of tasks. 

Precedence constraint Dependency relation between two or more tasks 
that specifies that a task cannot start executing before the completion of 
one or more tasks (called predecessors). 

Predictability An important property of a real-time system that allows to 
anticipate the consequence of any scheduling decision. 

Preemption An operation of the kernel that interrupts the currently exe­
cuting job and assigns the processor to a more urgent job ready to execute. 

Preemptive Scheduling A form of scheduling in which jobs can be inter­
rupted at any time and the processor assigned to more urgent jobs ready to 
execute. 

Priority A number associated with a task and used by the kernel to establish 
an order of precedence among tasks competing for a common resource. 



Glossary 359 

Priority Inversion A phenomenon for which a task is blocked by a lower-
priority task for an unbounded amount of time. 

Process A computation in which the operations are executed by the proces­
sor one at a time. A process may consist of a sequence of identical jobs, also 
called instances. The words process and task are often used as synonyms. 

Processing time The amount of time required by the processor to execute a 
job without interruption. It is also called computation time or service time. 

Program A description of a computation in a formal language, called a Pro­
gramming Language. 

Push-through blocking A form of blocking introduced by the Priority In­
heritance and by the Priority Ceiling protocols. 

Queue A set of jobs waiting for a given type of resource and ordered according 
to some parameter. 

Relative Jitter The maximum difference between the start times (relative 
to the request times) of two consecutive instances of a periodic task. 

Request time The time instant at which a job or a task requests a service 
to the processor. It is also called arrival time. 

Resource Any entity (processor, memory, program, data, and so on) that 
can be used by tasks to carry on their computation. 

Resource constraint Dependency relation among tasks that share a com­
mon resource used in exclusive mode. 

Response time The time interval between the request time and the finishing 
time of a job. 

Schedulable task set A task set for which there exists a feasible schedule. 

Schedule An assignment of tasks to the processor, so that each task is exe­
cuted until completion. 



360 GLOSSARY 

Scheduling An activity of the kernel that determines the order in which 
concurrent jobs are executed on a processor. 

Semaphore A kernel data structure used to synchronize the execution of 
concurrent jobs. 

Server A kernel process dedicated to the management of a shared resource. 

Service t ime The amount of time required by the processor to execute a job 
without interruption. It is also called computation time or processing time. 

Shared resource A resource that is accessible by two or more processes. 

Slack t ime The maximum delay that a job can experience after its activation 
and still complete within its deadline. At the arrival time, the slack is equal 
to the relative deadline minus the computation time (D — C). It is also called 
laxity. 

Soft task A task whose instances should be possibly completed within their 
deadlines, but no serious consequences occur if a deadline is missed. 

Sporadic task An aperiodic task characterized by a minimum interarrival 
time between consecutive instances. 

Start t ime The time at which a job starts executing for the first time. 

Starvation A phenomenon for which an active job waits for the processor 
for an unbounded amount of time. 

Static scheduling A method in which all scheduling decisions are precom-
puted off-line, and jobs are executed in a predetermined fashion, according 
to a time-driven approach. 

Synchronization Any constraint that imposes an order to the operations 
carried out by two or more concurrent jobs. A synchronization is typically 
imposed for satisfying precedence or resource constraints. 

Tardiness The interval of time in which a job stays active after its deadline. 
It is also called exceeding time. 



Glossary 361 

Task A computation in which the operations are executed by the processor 
one at a time. A task may consist of a sequence of identical jobs, also called 
instances. The words process and task are often used as synonyms. 

Task control block A kernel data structure associated with each task con­
taining all the information necessary for task management. 

Tick The minimum interval of time that is handled by the kernel. It defines 
the time resolution and the time unit of the system. 

Timeout The time limit specified by a programmer for the completion of an 
action. 

Time-overflow Deadline miss. A situation in which the execution of a job 
continues after its deadline. 

Timesharing A kernel mechanism in which the available time of the proces­
sor is divided among all active jobs in time slices of the same length. 

Time slice A continuous interval of time in which a job is executed on the 
processor without interruption. 

Utilization factor The fraction of the processor time utilized by a set of 
periodic tasks. 

Utility function A curve that describes the value of a task as a function of 
its finishing time. 

Value A task parameter that describes the relative importance of a task with 
respect to the other tasks in the system. 

Value Density The ratio between the value of a task and its computation 
time. 



REFERENCES 

[ABDNB96] P. Ancilotti, G. C. Buttazzo, M. Di Natale, and M. Bizzarri. A 
flexible tool kit for the development of real-time applications. In 
Proceedings of the IEEE Real-time Technology and Application 
Symposium, pages 260-262, June 1996. 

[ABDNS96] P. Ancilotti, G. C. Buttazzo, M. Di Natale, and M. Spuri. A 
development environment for real-time applications. Journal of 
Software Engineering and Knowledge Engineering, 6(3):91-99, 
September 1996. 

[ABR+93] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. 
Wellings. Applying new scheduling theory to static priority pre­
emptive scheduling. Software Engineering Journal, 8(5):284-292, 
September 1993. 

[ABRW91] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. 
Hard real-time scheduling: the deadline-monotonic approach. In 
Proceedings of Eighth IEEE Workshop on Real-Time Operating 
Systems and Software, May 1991. 

[ABRW92] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. 
Hard real-time scheduling: The deadline monotonic approach. In 
IEEE Workshop on Real-Time Operating Systems, 1992. 

[AL86] L. Alger and J. Lala. Real-time operating system for a nuclear 
power plant computer. In Proceedings of the IEEE Real-Time 
Systems Symposium, December 1986. 

[AS88] R. J. Anderson and M. W. Spong. Hybrid impedance control of 
robotic manipulators. IEEE Journal of Robotics and Automation, 
4(5), October 1988. 

[B"*"93] J. Blazewicz et al. Scheduling in Computer and Manifacturing 
Systems. Springer-Verlag, 1993. 



364 HARD REAL-TIME COMPUTING SYSTEMS 

[BAF94] G. C. Buttazzo, B. Allotta, and F. Fanizza. Mousebuster: a 
robot for catching fast objects. IEEE Control Systems Magazine, 
14(l):49-56, February 1994. 

[Baj88] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):996-
1005, August 1988. 

[Bak91] T.P. Baker. Stack-based scheduling of real-time processes. Journal 
of Real-Time Systems, 3, 1991. 

[BDN93] G.C. Buttazzo and M. Di Natale. Hartik: a hard real-time ker­
nel for programming robot tasks with explicit time constraints 
and guaranteed execution. In Proceedings of IEEE International 
Conference on Robotics and Automation, May 1993. 

[BFR71] P. Bratley, M. Florian, and P. Robillard. Scheduling with earliest 
start and due date constraints. Naval Research Quarterly, 18(4), 
1971. 

[BH73] Per Brinch Hansen. Operating System Principles. Prentice-Hall, 
1973. 

[BKM+92] S. Baruah, G. Koren, D. Mao, A. Raghunathan B. Mishra, 
L. Rosier, D. Shasha, and F. Wang. On the competitiveness of 
on-line real-time task scheduling. Journal of Real- Time Systems, 
4, 1992. 

[BL97] G. Buttazzo and G. Lipari. Scheduling analysis of hybrid real­
time task sets. In Proceedings of the IEEE Euromicro Workshop 
on Real-Time Systems, 1997. 

[Blo77] Arthur Bloch. Murphy's Law. Price/Stern/Sloan Publishers, Los 
Angeles, California, 1977. 

[BI08O] Arthur Bloch. Murphy's Law Book Two. Price/Stern/Sloan Pub-
Hshers, Los Angeles, California, 1980. 

[BI088] Arthur Bloch. Murphy's Law Book Three. Price/Stern/Sloan Pub­
lishers, Los Angeles, California, 1988. 

[BR91] S. Baruah and L.E. Rosier. Limitations concerning on-line 
scheduling algorithms for overloaded real-time systems. In Eighth 
IEEE Workshop on Real-Time Operating Systems and Software, 
1991. 



References 365 

[BRH90] S.K. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and com­
plexity concerning the preemptive scheduling of periodic, real-time 
tasks on one processor. Journal of Real-Time Systems, 2, 1990. 

[BS93] G.C. Buttazzo and J. Stankovic. Red: A robust earliest dead­
line scheduling algorithm. In Proceedings of Third International 
Workshop on Responsive Computing Systems, 1993. 

[BS95] G.C. Buttazzo and J. Stankovic. Adding robustness in dynamic 
preemptive scheduling. In D.S. Fussel and M. Malek, editors, 
Responsive Computer Systems: Steps Toward Fault-Tolerant Real-
Time Systems. Kluwer Academic Publishers, 1995. 

[BS97] G. Buttazzo and F. Sensini. Deadline assignment methods for soft 
aperiodic scheduling in hard real-time systems. In Submitted to 
IEEE Euromicro Workshop on Real-Time Systems, 1997. 

[BSR88] S. Biyabani, J. Stankovic, and K. Ramamritham. The integra­
tion of deadline and criticalness in hard real-time scheduling. In 
Proceedings of the IEEE Real-Time Systems Symposium, 1988. 

[But91] G.C. Buttazzo. Harems: Hierarchical architecture for robotics 
experiments with multiple sensors. In IEEE Proceedings of the 
Fifth International Conference on Advanced Robotics ('91 ICAR), 
June 1991. 

[But93] G.C. Buttazzo. Hartik: A real-time kernel for robotics applica­
tions. In Proceedings of the IEEE Real-Time Systems Symposium, 
December 1993. 

[But96] G. C. Buttazzo. Real-time issues in advanced robotics applica­
tions. In Proceedings of the 8th IEEE Euromicro Workshop on 
Real-Time Systems, pages 77-82, June 1996. 

[CC89] H. Ghetto and M. Ghetto. Some results of the earliest deadline 
scheduling algorithm. IEEE Transactions on Software Engineer­
ing, 15(10), 1989. 

[CL90] M. Chen and K. Lin. Dynamic priority ceilings: A concurrency 
control protocol for real-time systems. Journal of Real-Time Sys­
tems, 2, 1990. 

[Cla89] D. Clark. Hie: An operating system for hierarchies of servo loops. 
In Proceedings of IEEE International Conference on Robotics and 
Automation, 1989. 



366 HARD REAL-TIME COMPUTING SYSTEMS 

[CSB90] H. Ghetto, M. Silly, and T. Bouchentouf. Dynamic scheduling 
of real-time tasks under precedence constraints. Journal of Real-
Time Systems, 2, 1990. 

[Cut85] M. R. Cutkosky. Robot Grasping and Fine Manipulation. Kluwer 
Academic Publishers, 1985. 

[DB87] P. Dario and G. C. Buttazzo. An anthropomorphic robot finger for 
investigating artificial tactile perception. International Journal of 
Robotics Research, 6(3):25-48, Fall 1987. 

[Der74] M.L. Dertouzos. Gontrol robotics: the procedural control of phys­
ical processes. Information Processing, 74, 1974. 

[Dij68] E. W. Dijkstra. Gooperating sequential processes. In F. Genuys, 
editor, Programming Languages. Academic Press, New York, 1968. 

[DRSK89] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-time 
operating system of mars. Operating System Review, 23(3): 141-
157, July 1989. 

[DTB93] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time 
in fixed priority pre-emptive systems. In Proceedings of the IEEE 
Real-Time Systems Symposium, December 1993. 

[Foh93] G. Fohler. Realizing changes of operational modes with pre 
run-time scheduled hard real-time systems. In H. Kopetz and 
Y. Kakuda, editors. Responsive Computer Systems, pages 287-
300. Springer-Verlag, 1993. 

[Foh95] G. Fohler. Joint scheduling of distributed complex periodic and 
hard aperiodic tasks in statically scheduled systems. In Proceed­
ings of the IEEE Real-Time Systems Symposium, pages 152-161, 
December 1995. 

[GB95] T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline 
scheduling environment. Journal of Real-Time Systems, 9, 1995. 

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A 
Guide to the Theory of NP-Completeness. W.H. Freeman and 
Gompany, 1979. 

[GLLK79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy 
Kan. Optimization and approximation in deterministic sequencing 
and scheduling theory: a survey. Annals of Discrete Mathematics, 
5, 1979. 



References 367 

[GR91] 

[Gra76] 

[HHPD87] 

[HLC91] 

[Hor74] 

[Jac55] 

[JS93] 

[JSM91] 

[JSP92] 

[Kar92] 

[KB86] 

N. Gehani and K. Ramamritham. Real-time concurrent c: A 
language for programming dynamic real-time systems. Journal of 
Real-Time Systems^ 3, 1991. 

R.L. Graham. Bounds on the performance of scheduling algo­
rithms. In Computer and Job Scheduling Theory, pages 165-227. 
John Wiley and Sons, 1976. 

V.P. Holmes, D. Harris, K. Piorkowski, and G. Davidson. Hawk: 
An operating system kernel for a real-time embedded multipro­
cessor. Technical report, Sandia National Laboratories, 1987. 

J.R. Haritsa, M. Livny, and M.J. Carey. Earliest deadline schedul­
ing for real-time database systems. In Proceedings of the IEEE 
Real-Time Systems Symposium, December 1991. 

W. Horn. Some simple scheduling algorithms. 
Logistics Quarterly, 21, 1974. 

Naval Research 

J.R. Jackson. Scheduling a production line to minimize maximum 
tardiness. Management Science Research Project 43, University 
of California, Los Angeles, 1955. 

K. Jeffay and D.L. Stone. Accounting for interrupt handling costs 
in dynamic priority task systems. In Proceedings of the IEEE 
Real-Time Systems Symposium, pages 212-221, December 1993. 

K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive 
scheduling of periodic and sporadic tasks with varying execution 
priority. In Proceedings of the IEEE Real-Time Systems Sympo­
sium, pages 129-139, December 1991. 

K. Jeffay, D.L. Stone, and D. Poirier. Yartos: Kernel support 
for efficient, predictable real-time systems. In W. Halang and 
K. Ramamritham, editors, Real-Time Programming, pages 7-12. 
Pergamon Press, 1992. 

R. Karp. On-line algorithms versus off-line algorithms: How much 
is it worth to know the future? Information Processing, 92(1), 
1992. 

O. Khatib and J. Burdick. Motion and force control of robot 
manipulators. In Proceedings of IEEE Conference on Robotics 
and Automation, 1986. 



368 HARD REAL-TIME COMPUTING SYSTEMS 

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabla, 
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-time 
systems: The mars approach. IEEE Micro, 9(1), February 1989. 

[KIM78] H. Kise, T. Ibaraki, and H. Mine. A solvable case of the one 
machine scheduling problem with ready and due times. Operations 
Research, 26(1):121-126, 1978. 

[KKS89] D.D. Kandlur, D.L. Kiskis, and K.G. Shin. Hartos: A distributed 
real-time operating system. Operating System Review, 23(3), July 
1989. 

[KS86] E. Kligerman and A. Stoyenko. Real-time euclid: A language 
for reliable real-time systems. IEEE Transactions on Software 
Engineering, 12(9), September 1986. 

[KS92] G. Koren and D. Shasha. D-over: An optimal on-Une scheduHng 
algorithm for overloaded real-time systems. In Proceedings of the 
IEEE Real-Time Systems Symposium, 1992. 

[L"^94] J.W.S. Liu et al. Imprecise computations. In Proceedings of the 
IEEE, January 1994. 

[Law73] E.L. Lawler. Optimal sequencing of a single machine subject to 
precedence constraints. Managements Science, 19, 1973. 

[Lip97] G. Lipari. Resource constraints among periodic and aperiodic 
tasks. RETIS LAB, TR-97 01, Scuola Superiore S. Anna, Pisa, 
Italy, February 1997. 

[LK88] I. Lee and R. King. Timix: A distributed real-time kernel for 
multi-sensor robots. In Proceedings of IEEE International Con­
ference on Robotics and Automation, 1988. 

[LKP88] I. Lee, R. King, and R. Paul. Rk: A real-time kernel for a 
distributed system with predictable response. MS-CIS-88-78, 
GRASP LAB 155 78, Department of Computer Science, Univer­
sity of Pennsylvania, Philadelphia, PA, October 1988. 

[LL73] C.L. Liu and J.W. Layland. Scheduling algorithms for multipro­
gramming in a hard-real-time environment. Journal of the Asso­
ciation for Computing Machinery, 20(1), 1973. 

[LLN87] J.W.S. Liu, K.J. Lin, and S. Natarajan. Scheduling real-time, 
periodic jobs using imprecise results. In Proceedings of the IEEE 
Real-Time System Symposium, December 1987. 



References 369 

[LLS+91] J.W.S. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao. Al­
gorithms for scheduUng imprecise calculations. IEEE Computer, 
24(5), May 1991. 

[LNL87] K.J. Lin, S. Natarajan, and J.W.S. Liu. Concord: a system of im­
precise computation. In Proceedings of the 1987 IEEE Compsac, 
October 1987. 

[Loc86] C D . Locke. Best-effort Decision Making for Real-Time Schedul­
ing. PhD thesis, Carnegie-Mellon University, Computer Science 
Department, Pittsburgh, PA, 1986. 

[LRK77] J.K. Lenstra and A.H.G. Rinnooy Kan. Optimization and ap­
proximation in deterministic sequencing and scheduling: A survey. 
Annals of Discrete Mathematics, (5):287-326, 1977. 

[LRKB77] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity 
of machine scheduling problems. Annals of Discrete Mathematics, 
(l):343-362, 1977. 

[LRT92] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for 
scheduling soft-aperiodic tasks in fixed-priority preemptive sys­
tems. In Proceedings of the IEEE Real-Time Systems Symposium, 
December 1992. 

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduUng 
algorithm: Exact characterization and average case behavior. In 
Proceedings of the IEEE Real- Time Systems Symposium, Decem­
ber 1989. 

[LSS87] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic 
responsiveness in hard real-time environments. In Proceedings of 
the IEEE Real-Time Systems Symposium, December 1987. 

[LTCA89] S.-T. Levi, S.K. Tripathi, S.D. Carson, and A.K. Agrawala. The 
maruti hard real-time operating system. Operating System Re­
view, 23(3), July 1989. 

[LW82] J. Leung and J.W. Whitehead. On the complexity of fixed priority 
scheduling of periodic real-time tasks. Performance Evaluation, 
2(4), 1982. 

[Nat95] Swaminathan Natarajan, editor. Imprecise and Approximate 
Computation. Kluwer Academic Publishers, 1995. 



370 HARD REAL-TIME COMPUTING SYSTEMS 

[PS85] J. Peterson and A. Silberschatz. 
Addison-Wesley, 1985. 

Operating Systems Concepts. 

[Raj91] R. Rajkumar. Synchronization in Real-Time Systems: A Priority 
Inheritance Approach. Kluwer Academic Publishers, 1991. 

[ReaSG] J. Ready. Vrtx: A real-time operating system for embedded mi­
croprocessor applications. IEEE Micro, August 1986. 

[RS84] K. Ramamritham and J.A. Stankovic. Dynamic task scheduling 
in distributed hard real-time systems. IEEE Software, 1(3), July 
1984. 

[RTL93] S. Ramos-Thuel and J.P. Lehoczky. On-line scheduling of hard 
deadline aperiodic tasks in fixed-priority systems. In Proceedings 
of the IEEE Real-Time Systems Symposium, December 1993. 

[SB94] M. Spuri and G. Buttazzo. Efficient aperiodic service under ear­
liest deadline scheduling. In Proceedings of the IEEE Real- Time 
Systems Symposium, December 1994. 

[SB96] M. Spuri and G.C. Buttazzo. Scheduling aperiodic tasks in dy­
namic priority systems. Journal of Real-Time Systems, 10(2), 
1996. 

[SBG86] K. Schwan, W. Bo, and P. Gopinath. A high performance, object-
based operating system for real-time robotics application. In Pro­
ceedings of the IEEE Real-Time Systems Symposium, December 
1986. 

[SBS95] M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic 
scheduling under dynamic priority systems. In Proceedings of the 
IEEE Real-Time Systems Symposium, December 1995. 

[SGB87] K. Schwan, P. Gopinath, and W. Bo. Chaos-kernel support for 
objects in the real-time domain. IEEE Transactions on Comput­
ers, 36(8), August 1987. 

[Sha85] S. Shani. Concepts in Discrete Mathematics. Camelot Publishing 
Company, 1985. 

[SLCG89] W. Shih, W.S. Liu, J. Chung, and D.W. Gillies. Scheduling tasks 
with ready times and deadlines to minimize average error. Oper­
ating System Review, 23(3), July 1989. 



References 371 

[SLR88] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some prac­
tical problems in prioritized preemptive scheduling. In Proceedings 
of the IEEE Real-Time Systems Symposium, December 1988. 

[SLS95] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable 
server algorithm for enhancing aperiodic responsiveness in hard-
real-time environments. IEEE Transactions on Computers, 4(1), 
January 1995. 

[Spu95] M. Spuri. Earliest Deadline Scheduling in Real-Time Systems. 
PhD thesis, Scuola Superiore S. Anna, Pisa, Italy, 1995. 

[SR87] J. Stankovic and K. Ramamritham. The design of the spring ker­
nel. In Proceedings of the IEEE Real-Time Systems Symposium, 
December 1987. 

[SR88] J. Stankovic and K. Ramamritham, editors. Tutorial on Hard 
Real-Time Systems. IEEE Computer Society Press, 1988. 

[SR89] J. Stankovic and K. Ramamritham. The spring kernel: A new 
paradigm for real-time operating systems. Operating System Re­
view, 23(3), July 1989. 

[SR90] J.A. Stankovic and K. Ramamritham. What is predictability for 
real-time systems? Journal of Real-Time Systems, 2, 1990. 

[SR91] J.A. Stankovic and K. Ramamritham. The spring kernel: a new 
paradigm for real-time systems. IEEE Software, May 1991. 

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance pro­
tocols: An approach to real-time synchronization. IEEE Trans­
actions on Computers, 39(9), September 1990. 

[SRS93] C. Shen, K. Ramamritham, and J. Stankovic. Resource reclaim­
ing in multiprocessor real-time systems. IEEE Transactions on 
Parallel and Distributed Computing, 4(4):382-397, April 1993. 

[SSDNB95] J.A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo. Impli­
cations of classical scheduling results for real-time systems. IEEE 
Computer, 28(6), June 1995. 

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for 
hard-real-time systems. Journal of Real-Time Systems, 1, July 
1989. 



372 HARD REAL-TIME COMPUTING SYSTEMS 

[Sta88] J.A. Stankovic. Misconceptions about real-time computing. IEEE 
Computer, 21(10), October 1988. 

[SZ92] K. Schwan and H. Zhou. Dynamic scheduling of hard real-time 
tasks and real-time threads. IEEE Transactions on Software En­
gineering, 18(8):736-748, August 1992. 

[TK88] H. Tokuda and M. Kotera. A real-time tool set for the arts ker­
nel. In Proceedings of the IEEE Real-Time Systems Symposium, 
December 1988. 

[TLS95] T.S. Tia, J.W.S. Liu, and M. Shankar. Algorithms and optimal-
ity of scheduling aperiodic requests in fixed-priority preemptive 
systems. Journal of Real-Time Systems, 1995. 

[TM89] H. Tokuda and C.W. Mercer. Arts: A distributed real-time kernel. 
Operating System Review, 23(3), July 1989. 

[TT89] P. Thambidurai and K.S. Trivedi. Transient overloads in fault-
tolerant real-time systems. In Proceedings of the IEEE Real-Time 
Systems Symposium, December 1989. 

[TWW87] H. Tokuda, J. Wendorf, and H. Wang. Implementation of a time-
driven scheduler for real-time operating systems. In Proceedings 
of the IEEE Real-Time Systems Symposium, December 1987. 

[Whi85] D. E. Whitney. Historical perspective and state of the art in robot 
force control. In Proceedings of IEEE Conference on Robotics and 
Automation, 1985. 

[WR91] E. Walden and C.V. Ravishankar. Algorithms for real-time 
scheduling problems. Technical report, University of Michigan, 
Department of Electrical Engineering and Computer Science, 
Michigan (USA), April 1991. 

[Zlo93] G. Zlokapa. Real-time systems: Well-timed scheduling and 
scheduling with precedence constraints. Ph.D. thesis, CS-TR 
93 51, Department of Computer Science, University of Mas­
sachusetts, Amherst, MA, February 1993. 



INDEX 

Absolute Finishing Jitter, 80 
Absolute Release Jitter, 79 
Accidents, 2 
Actuators, 304 
Ada language, 19 
Adversary argument, 235 
Aperiodic service 

Background scheduling, 110 
Deferrable Server, 116 
Dynamic Priority Exchange, 150 
Dynamic Sporadic Server, 155 
EDL server, 163 
IPE server, 168 
Polling Server, 112 
Priority Exchange, 125 
Slack Stealer, 138 
Sporadic Server, 132 
TB* server, 171 
Total Bandwidth Server, 160 

Aperiodic task, 27, 51 
Applications, 1, 301 
Arrival time, 26 
ARTS, 325, 340 
Assembly language, 2 
Asynchronous communication, 290 
Audsley, 92, 98 
Autonomous system, 307 
Average response time, 7-8, 11 

B 

Background scheduling, 110 

Baker, 208 
Baruah, 102, 228, 234, 241 
Best-effort, 38 
Biyabani, 227 
Blocking factor, 194 
Blocking, 181 
Bouchentouf, 71 
Braking control system, 307 
Bratley, 64 
Burns, 140 
Busy period, 103 
Busy wait, 16-18 
Buttazzo, 150, 160, 229, 245 

CAB, 291 
Cache, 13 
Carey, 227 
Ceiling blocking, 204 
Ceiling, 201 
Chained blocking, 199 
CHAOS, 325 
Chen, 185 
Chetto, 71, 163 
Chorus, 323 
Clairvoyant scheduler, 35 
Clairvoyant scheduling, 234 
Clark, 291 
Communication channel, 291 
Competitive factor, 234 
Complete schedule, 63 
Completion time, 27 
Computation time, 27 



374 INDEX 

Concurrency control protocols, 221 
Context switch, 24, 255 
Control applications, 301 
Control loops, 301 
Cost function, 40 
Critical instant, 79 
Critical section, 31, 181 
Critical time zone, 79 
Criticalness, 27 
Cumulative value, 43, 231 
Cyclical Asynchronous Buffers, 291 

D 

D-over algorithm, 248 
D-over, 248 
Dashboard, 307 
Davis, 140 
Deadline Monotonic, 96 
Deadline tolerance, 245 
Deadline, 8, 27 

firm, 231 
hard, 8 
soft, 8 

Deadlock prevention, 201, 205, 216 
Deadlock, 200 
Deferrable Server, 116 
Dertouzos, 57 
DICK, 253, 260 
Ding, 92 
Direct blocking, 188 
Directed acychc graph, 28 
Dispatching, 23, 271 
DMA, 13 

cycle stealing, 13 
timeslice, 13 

Domino effect, 37, 225 
Driver, 15 
Dynamic Priority Exchange, 150 
Dynamic priority servers, 149 

Dynamic Priority Exchange, 150 

Dynamic Sporadic Server, 155 
EDL server, 163 
IPE server, 168 
TB* server, 171 
Total Bandwidth Server, 160 

Dynamic scheduling, 35 
Dynamic Sporadic Server, 155 

E 

Earliest Deadline First, 56, 93 
Earliest Due Date, 53 
EDL server, 163 
Eligibility, 335 
Empty schedule, 63 
Environment, 302 
Ethernet, 329, 336 
Event, 6, 17 
Event-driven scheduling, 109 
Exceeding time, 27, 246 
Exclusive resource, 31, 181 
Execution time, 27 
Exhaustive search, 63 
Exponential time algorithm, 34 

Fault tolerance, 12, 326-327 
Feasible schedule, 25 
Feedback, 304 
Finishing time, 27 
Firm task, 109, 231 
First Come First Served, 111 
Fixed-priority servers, 110 

Deferrable Server, 116 
Polling Server, 112 
Priority Exchange, 125 
Slack Stealer, 138 

Fohler, 330 
Friction, 308 



Index 375 

Graceful degradation, 230, 245 
Graham, 44 
Graham's notation, 51 
Guarantee mechanism, 36 
Guarantee, 243 
Gulf War, 3 

H 

Hard real-time system, 8 
Hard task, 8, 26 
Haritsa, 227 
HARTIK, 291, 325, 345 
HARTOS, 325 
Heuristic function, 66, 334 
Heuristic scheduling, 35 
Hierarchical design, 313 
Hit Value Ratio, 249 
Horn's algorithm, 56 
Howell, 102 
Hybrid task sets, 109 
Hyperperiod, 103 

I 

Idle state, 256 
Idle time, 24 
Imprecise computation, 38 
Instance, 27 
Interarrival time, 109 
Interference, 98-99, 172 
Interrupt handling, 15 
Intertask communication, 289 
IPE server, 168 

Jackson's rule, 53 
Jeffay, 62, 102, 299 

Jitter, 79 
Job, 27 

K 

Karp, 242 
Kernel primitive 

activate, 280 
create, 260 
end-cycle, 281 
end-process, 283 
kill, 283 
sleep, 260 

Kernel, 253 
Koren, 248 

Language, 12, 19 
Lateness, 27 
Latest Deadline First, 68 
Lawler, 68 
Laxity, 27 
Layland, 82 
Lehoczky, 92, 116, 125, 138, 186, 

201 
Leung, 96 
Lifetime, 265 
Lin, 185 
List management, 272 
Liu, 82, 142 
Livny, 227 
Load, 228 
Locke, 227 

M 

Mach, 227 
MACH, 324 
Mailbox, 290 
Maintainability, 12 



376 INDEX 

MARS, 325 
Martel, 62 
MARUTI, 325 
Maximum lateness, 40 
Memory management, 19 
Message passing, 289 
Message, 290 
Metrics, 41, 230 
Mode change, 330 
Motorola, 327 
Multimedia, 38 
Murphy's Laws, 4 
Mutual exclusion, 18, 31, 181, 284 

N 

Nested critical section, 187 
Non-idle scheduling, 62 
Non-preemptive scheduling, 62 
Non-real-time task, 109 
NP-complete, 34 
NP-hard, 34 

Phase, 28, 78 
Polling Server, 112 
Polynomial algorithm, 34 
Precedence constraints, 28, 68 
Precedence graph, 28 
Predecessor, 28 
Predictability, 12 
Preemption level, 209 
Preemption, 24 
Preemptive scheduling, 35 
Priority Ceiling Protocol, 201 
Priority Exchange Server, 125 
Priority Inheritance Protocol, 186 
Priority inversion, 184 
Process, 23 
Processor demand, 102 
Processor utilization factor, 80 
Programming language, 12, 19 
Pruning, 64 
PSOS, 323 
PUMA, 336 
Push-through blocking, 189 

O 
Off-line scheduling, 35 
On-line guarantee, 36 
On-line scheduling, 35 
Optimal scheduling, 35 
0S9, 323 
Overhead, 296 
Overload, 225 

Q 

Quality of service, 38 
Queue operations 

extract, 274 
insert, 272 

Queue, 24 
idle, 256 
ready, 24, 256 
wait, 32, 182, 256 

Partial schedule, 63 
Patriot missiles, 3 
Peak load, 12 
Performance, 40, 43, 230 
Period, 28, 78 
Periodic task, 27, 77 

R 

Rajkumar, 186, 201 
Ramamritham, 65, 226 
Ramos-Thuel, 138 
Rate Monotonic, 82 
Ready queue, 24, 256 



Index 377 

Real Time, 4 
Receive operation, 290 
Reclaiming mechanism, 154, 244 
Recovery strategy, 247 
Recursion, 20 
RED algorithm, 245 
Relative Finishing Jitter, 80 
Relative Release Jitter, 79 
Release time, 77 
Residual laxity, 245 
Resource access protocol, 181 
Resource constraints, 31, 181, 186 
Resource reclaiming, 154, 245, 247 
Resource, 31, 181 
Response time, 79 
Richard's anomalies, 44 
RK, 325, 336 
Robot assembly, 315 
Robotic applications, 301 
Robust scheduling, 243 
Rosier, 102 
RT-MACH, 324 
RT-UNIX, 324 
Running state, 23 

Schedulable task set, 25 
Schedule, 24 

feasible, 25 
preemptive, 25 

Scheduling algorithm, 23 
D-over, 248 
Deadline Monotonic, 96 
Earliest Deadline First, 56, 93 
Earliest Due Date, 53 
Horn's algorithm, 56 
Jackson's rule, 53 
Latest Deadline First, 68 
Rate Monotonic, 82 
Robust Earliest Deadline, 245 

Scheduling anomalies, 44 
Scheduling policy, 23 
Scheduling problem, 34 
Scheduling, 271 

best effort, 243 
dynamic, 35 
guarantee, 243 
heuristic, 35 
non-preemptive, 35 
off-line, 35 
on-line, 35 
optimal, 35 
preemptive, 35 
robust, 243 
static, 35 

Schwan, 227 
Search tree, 63 
Semaphore Control Block, 262 
Semaphore queue, 256 
Semaphore, 18, 32, 181, 284 
Send operation, 290 
Sensory acquisition, 301 
Server capacity, 112 
Sha, 92, 116, 125, 186, 201 
Shankar, 142 
Shared resource, 31, 181 
Shasha, 248 
Signal, 32, 182, 286 
Silly, 71 
Slack Stealer, 138 
Slack time, 27 
Sleep state, 260 
Soft task, 8, 26 
Sporadic Server, 132 
Sporadic tasks, 109 
Spring algorithm, 66 
Spring, 325, 331 
Sprunt, 132 
Spuri, 150, 160, 185 
Stack Resource Policy, 208 
Stack sharing, 218 
Stanat, 62 



378 INDEX 

Stankovic, 65, 226, 229, 245 
Start time, 27 
Static scheduling, 35 
Stone, 102, 299 
Strosnider, 116, 125 
Synchronization, 284 
Synchronous communication, 289 
System call 

activate, 280 
create, 260 
end_cycle, 281 
end-process, 283 
kill, 283 
sleep, 260 

System ceiling, 212 
System tick, 265 

Tactile exploration, 317 
Tardiness, 27, 246 
Task Control Block, 261 
Task instance, 27 
Task states, 256 

delay, 256 
idle, 256 
ready, 256 
receive, 257 
running, 256 
sleep, 260 
waiting, 256 
zombie, 258 

Task, 23 
active, 23 
firm, 231 
ready, 23 
running, 23 

TDMA, 329 
Thambidurai, 227 
Tia, 142 
Tick, 265 

Time resolution, 265 
Time slice, 25 
Time, 4 
Time-driven scheduling, 109 
Time-overflow, 94-95, 267 
Timeliness, 12 
Timer interrupt, 266 
Timing constraints, 26 
TIMIX, 325 
Tindell, 140 
Total Bandwidth Server, 160 
Transitive inheritance, 190 
Trivedi, 227 
Turing machine, 34 

U 

UNIX, 324 
Utility function, 43, 230 
Utilization factor, 80 

Value density, 230, 242 
Value, 27, 230 
Vehicle, 307 
VRTX32, 323 
VxWorks, 221, 323-324 

W 

Wait, 32, 182, 285 
Waiting state, 32, 182 
Whitehead, 96 
Workload, 228 
Worst-case scenario, 36 

Y 

YARTOS, 325 



379 

Z 

Zhou, 227 
Zlokapa, 227 
Zombie state, 258 



Giorgio C. Buttazzo graduated in 1985 in Electronic Engineering at the 
University of Pisa (Italy) and in 1987 received a M.S. degree where he also 
worked on active perception and real-time control at the G.R.A.S.P. 
(General Robotics and Active Sensory Processing) Laboratory of the 
University of Pennsylvania. In 1991, he received a Ph.D. degree in 
robotics at the Scuola Superiore S. Anna of Pisa. He is currently Assistant 
Professor of Computer Engineering at the Scuola Superiore S. Anna of Pisa. 
His main research areas include real-time computing, dynamic scheduling 
algorithms, sensor-based control, advanced robotics, and neural networks. 




